Adaptive Optimal Digital PID Controller

Article Preview

Abstract:

It is necessary to change the parameters of PID controller if the parameters of plants change or there are disturbances. Particle swarm optimization algorithm is a powerful optimization algorithm to find the global optimal values in the problem space. In this paper, the particle swarm optimization algorithm is used to identify the model of the plant and the parameter of digital PID controller online. The model of the plant is identified online according to the absolute error of the real system output and the identified model output. The digital PID parameters are tuned based on the identified model and they are adaptive if the model is changed. Simulations are done to validate the proposed method comparing with the classical PID controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1021-1026

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. N. Koivo, Book review: Practical PID control-Antonio Visioli, IEEE Transactions on Automatic Control, vol. 53, pp.2217-2218, (2008).

DOI: 10.1109/tac.2008.920854

Google Scholar

[2] M. Sam Fadali, Ditital Control Engineering: Analysis and design, Acadamic Press, (2009).

Google Scholar

[3] J. G. Zigeler, Nichols N B. optimization setting for automatic controller, Trans. ASME, Vol. 64, No. 11, pp.756-769, (1942).

Google Scholar

[4] G. H. Cohen and G. A. Coon, Theoretical Consideration of Retarded Control, Trans. ASME, vol. 75, pp.827-834, (1953).

DOI: 10.1115/1.4015452

Google Scholar

[5] H. Han, and A. Luo, Nonlinear PID controller based on genetic tuning algorithm, Control and Decision, Vol. 20, No. 4, pp.448-450, (2005).

Google Scholar

[6] J. S. Yang, PID control for a binary distillation column using a genetic searching algorithm, WSEAS Trans. Systems, Vol. 5, No. 4, p.720726, (2006).

Google Scholar

[7] T. H. Kim, Maruta, and T. Sugie, Robust PID controller tuning based on the constrained particle swarm optimization, Automatica, vol. 44, Issue 4, pp.1104-1110, April (2008).

DOI: 10.1016/j.automatica.2007.08.017

Google Scholar

[8] Y. Luo, J. Zhang, and X. Li, The optimization of PID controller parameters based on artificial fish swarm algorithm, in: proc. the IEEE International Conf. Automation and Logistics, Jinan, China, pp.1058-1062, August (2007).

DOI: 10.1109/ical.2007.4338724

Google Scholar

[9] D. B. Fogel, Evolutionary computation: toward a new philosophy of a machine intelligence, IEEE Press, New York, (2000).

Google Scholar

[10] A. Jalilvand, A. Kimiyahgahalam, A. Ashouri, M. Mahadavi, Advanced Particle Swarm Optimization-Based PID Controller Parameters Tuning, 12th IEEE International Multitopic Conference, Karachi , pp.429-435, Dec. (2008).

DOI: 10.1109/inmic.2008.4777776

Google Scholar

[11] J. Kennedy, R. C. Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp.1942-1948. (1995).

Google Scholar

[12] X. Hu, Y. Shi, R. Eberhart, Recent Advances in Particle Swarm, Congress on Evolutionary Computation, pp.90-97. Piscataway, IEEE Service Center, (2004).

DOI: 10.1109/cec.2004.1330842

Google Scholar

[13] C. M Huang, C. J. Huang, M. L. Wang, A Particle Swarm Optimisation to Identifying the ARMAX Model for Short term Load Forecasting, IEEE Transactions on Power Systems. 20, pp.1126-1133, (2005).

DOI: 10.1109/tpwrs.2005.846106

Google Scholar

[14] M. Clerc, Particle Swarm Optimisation. ISTE Publishing Company, (2006).

Google Scholar

[15] N. Nedjah, L. D. M. Mourelle, Systems Engineering Using Particle Swarm Optimisation, Nova Science Publishers, (2007).

Google Scholar