A Novel Dual-Loop Control Scheme for Payload Anti-Swing and Trolley Position of Industrial Robotic 3DOF Crane

Article Preview

Abstract:

In this paper, we propose a novel dual-loop control scheme (DLCS). We did not see such investigation of DLCS in the previous research work. DLCS scheme is a combination of classical PID and advanced state feedback control techniques. The proposed technique is used to control swing angle and trolley position of a 3DOF crane. Extensive simulations have been carried out using MATLAB / Simulink and practically validated on a Quanser 3DOF crane system. Experimental results indicate that the proposed DLCS control scheme improves crane operation by damping the payload oscillations. The scheme also smoothen the trolley motion. Our suggested technique provides better performance in terms of payload oscillations comparing to the classical PID.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

658-664

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Antic , Z. Jovanovic , S. Peric , S. Nikolic , M. Milojkovic , M. Milosevic, Anti-Swing Fuzzy Controller Applied in a 3D Crane System, Eng. Technol. Appl. Sci. Res. 2 (2012) 196-200.

DOI: 10.48084/etasr.146

Google Scholar

[2] M. Jamil, A. A. Janjua, I. Rafique, S. I. Butt, Y. Ayaz and S. O. Gilani, Optimal Control based Intelligent Controller for Active Suspension System, Life Sci. J., (2013) 653-659.

Google Scholar

[3] M. Faisal, M. Jamil, U. Iqbal and Y. Ayaz, Selection of Suitable Control Techniques for Payload Anti-Swing and Trolley Position Problems of 3DOF Crane, 1st Applied Mechanical Engineering Conference AMEC-ETEX 2014, Lahore, Pakistan, (2014).

DOI: 10.4028/www.scientific.net/amm.789-790.658

Google Scholar

[4] Y. J. Hua , Y. K. Shing , Adaptive Coupling Control For Overhead Crane Systems, Proc. of IEEE Trans. Ind. Electron, IECON05, Raleigh, NC, USA, (2005) 1858-1863.

Google Scholar

[5] H. Chen , B. Gao and X. Zhang, Dynamical Modeling and Nonlinear Control of a 3D Crane, Int. Conf. on Control and Automation (ICCA2005), Budapest, Hungary, (2005) 1085-1090.

Google Scholar

[6] E. M. Abdel-Rahman , A. H. Nayfeh , Z. N. Masoud, Dynamics and Control Of Cranes: A Review, J. Vib. Control, 9 (2003) 863-908.

DOI: 10.1177/1077546303009007007

Google Scholar

[7] J. Huang , X. Xie and Z. Liang, Control of Bridge Cranes With Distributed-Mass Payload Dynamics, IEEE/ASME Trans. Mechatronics, 1(20) (481 - 486) (2014).

DOI: 10.1109/tmech.2014.2311825

Google Scholar

[8] A. M. Hasanul Basher, Swing-free Transport Using Variable Structure Model Reference Control, Proc. of IEEE Southest conf., (2001) 85-92.

DOI: 10.1109/secon.2001.923092

Google Scholar

[9] B. Vikramaditya and R. Rajamani, Nonlinear control of a trolley crane system, Proc. of the American Control Conf., Chicago, Illinois, (2000) 1032-1036.

DOI: 10.1109/acc.2000.876657

Google Scholar

[10] G. Corriga , A. Giua , G. Usai, An implicit gain-scheduling controller for cranes, IEEE Trans. Control Systems Technology, 1(6) (1998) 15- 20.

DOI: 10.1109/87.654873

Google Scholar

[11] J. Yu , F. L. Lewis ,T. Huang, Nonlinear feedback control of a gantry crane, Proc. of the American Control Conf., Seattle, USA, (1995) 4310-4315.

Google Scholar

[12] J. Y. Lew and B. Halder, Experimental Study of Anti-Swing Crane Control for a Varying Load, Proc. Of the American Control Conf., Denver, Colorado, (2003) 1434-1439.

DOI: 10.1109/acc.2003.1239792

Google Scholar

[13] M. Jamil, S. M. Sharkh, M. N. Javid and V. V Nagendra, Active Control of Vibrations of a Tall Structure Excited by External Forces, Proc. of Int. Bhurban Conf. on Applied Sci. and Technology Islamabad, Pakistan, (2009) 187-191.

Google Scholar

[14] X. Zhang , Y. Fang and N. Sun, Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems with State and Control Constraints, IEEE Trans. Ind. Electron, 61 (2014) 6915-6925.

DOI: 10.1109/tie.2014.2320231

Google Scholar

[15] M. H. D. Raut, A. Singh and M. D. Patil, Design Of Digital Controller Using Pole Placement Method, Int. Conf. on Control, Automation, Communication and Energy Conservation – 2009, (2009) 1-5.

Google Scholar

[16] D. S. Karanjkar, S. Chatterji and A. Kumar, Design and Implementation of a Linear Quadratic Regulator Based Maximum Power Point Tracker for Solar Photo-Voltaic System, International J. of Hybrid Information Technology, 1 (7) (2014), 167-182.

DOI: 10.14257/ijhit.2014.7.1.14

Google Scholar

[17] Y. Lan and M. Fei. 2011. Design of State-Feedback Controller by Pole Placement for a Coupled Set of Inverted Pendulums, 10th Int. Conf. on Electronic Measurement and Instruments (ICEMI), (2011) 69–73.

DOI: 10.1109/icemi.2011.6037857

Google Scholar