[1]
D. Antic , Z. Jovanovic , S. Peric , S. Nikolic , M. Milojkovic , M. Milosevic, Anti-Swing Fuzzy Controller Applied in a 3D Crane System, Eng. Technol. Appl. Sci. Res. 2 (2012) 196-200.
DOI: 10.48084/etasr.146
Google Scholar
[2]
M. Jamil, A. A. Janjua, I. Rafique, S. I. Butt, Y. Ayaz and S. O. Gilani, Optimal Control based Intelligent Controller for Active Suspension System, Life Sci. J., (2013) 653-659.
Google Scholar
[3]
M. Faisal, M. Jamil, U. Iqbal and Y. Ayaz, Selection of Suitable Control Techniques for Payload Anti-Swing and Trolley Position Problems of 3DOF Crane, 1st Applied Mechanical Engineering Conference AMEC-ETEX 2014, Lahore, Pakistan, (2014).
DOI: 10.4028/www.scientific.net/amm.789-790.658
Google Scholar
[4]
Y. J. Hua , Y. K. Shing , Adaptive Coupling Control For Overhead Crane Systems, Proc. of IEEE Trans. Ind. Electron, IECON05, Raleigh, NC, USA, (2005) 1858-1863.
Google Scholar
[5]
H. Chen , B. Gao and X. Zhang, Dynamical Modeling and Nonlinear Control of a 3D Crane, Int. Conf. on Control and Automation (ICCA2005), Budapest, Hungary, (2005) 1085-1090.
Google Scholar
[6]
E. M. Abdel-Rahman , A. H. Nayfeh , Z. N. Masoud, Dynamics and Control Of Cranes: A Review, J. Vib. Control, 9 (2003) 863-908.
DOI: 10.1177/1077546303009007007
Google Scholar
[7]
J. Huang , X. Xie and Z. Liang, Control of Bridge Cranes With Distributed-Mass Payload Dynamics, IEEE/ASME Trans. Mechatronics, 1(20) (481 - 486) (2014).
DOI: 10.1109/tmech.2014.2311825
Google Scholar
[8]
A. M. Hasanul Basher, Swing-free Transport Using Variable Structure Model Reference Control, Proc. of IEEE Southest conf., (2001) 85-92.
DOI: 10.1109/secon.2001.923092
Google Scholar
[9]
B. Vikramaditya and R. Rajamani, Nonlinear control of a trolley crane system, Proc. of the American Control Conf., Chicago, Illinois, (2000) 1032-1036.
DOI: 10.1109/acc.2000.876657
Google Scholar
[10]
G. Corriga , A. Giua , G. Usai, An implicit gain-scheduling controller for cranes, IEEE Trans. Control Systems Technology, 1(6) (1998) 15- 20.
DOI: 10.1109/87.654873
Google Scholar
[11]
J. Yu , F. L. Lewis ,T. Huang, Nonlinear feedback control of a gantry crane, Proc. of the American Control Conf., Seattle, USA, (1995) 4310-4315.
Google Scholar
[12]
J. Y. Lew and B. Halder, Experimental Study of Anti-Swing Crane Control for a Varying Load, Proc. Of the American Control Conf., Denver, Colorado, (2003) 1434-1439.
DOI: 10.1109/acc.2003.1239792
Google Scholar
[13]
M. Jamil, S. M. Sharkh, M. N. Javid and V. V Nagendra, Active Control of Vibrations of a Tall Structure Excited by External Forces, Proc. of Int. Bhurban Conf. on Applied Sci. and Technology Islamabad, Pakistan, (2009) 187-191.
Google Scholar
[14]
X. Zhang , Y. Fang and N. Sun, Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems with State and Control Constraints, IEEE Trans. Ind. Electron, 61 (2014) 6915-6925.
DOI: 10.1109/tie.2014.2320231
Google Scholar
[15]
M. H. D. Raut, A. Singh and M. D. Patil, Design Of Digital Controller Using Pole Placement Method, Int. Conf. on Control, Automation, Communication and Energy Conservation – 2009, (2009) 1-5.
Google Scholar
[16]
D. S. Karanjkar, S. Chatterji and A. Kumar, Design and Implementation of a Linear Quadratic Regulator Based Maximum Power Point Tracker for Solar Photo-Voltaic System, International J. of Hybrid Information Technology, 1 (7) (2014), 167-182.
DOI: 10.14257/ijhit.2014.7.1.14
Google Scholar
[17]
Y. Lan and M. Fei. 2011. Design of State-Feedback Controller by Pole Placement for a Coupled Set of Inverted Pendulums, 10th Int. Conf. on Electronic Measurement and Instruments (ICEMI), (2011) 69–73.
DOI: 10.1109/icemi.2011.6037857
Google Scholar