Optical Properties of Cu2ZnSnSe4 Nanocrystalline Thin Films for Photovoltaic Devices

Article Preview

Abstract:

Presents a study of optical properties from transmittance measurements as a function of wavelength to CZTSe thin films (Cu2ZnSnSe4) using Bhattacharyya model and basic elements from the Swanepoel theory. The optical constants such as the absorption coefficient (α), the refractive index (n), the extinction coefficient (k) and physical properties such as gap (Eg), the real and imaginary part of the dielectric function (ε1 and ε2) and the film thickness (d), were determined. Gap values between 1.2 and 1.7 eV were obtained for compound when the mass (MX) of ZnSe was varied during the deposition stage. Inhomogeneity and high surface roughness were observed by SEM measurements for all samples. Size grain varying between 458.16 and 630.28 nm were obtained while the ZnSe binary mass varied from 0.171 to 0.153 g. Refractive index and extinction coefficient of Cu2ZnSnSe4 films were obtained for λ = 800 nm. A decrease of ε1 and ε2 was observed as the wavelength increases; it is associated with the presence of binary phases in the XRD patterns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-94

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M .P. Salomé, J. Malaquias, P.A. Fernandes, M.S. Ferreira, A.F. da Cunha, J.P. Leitao, J.C. González and F.M. Matinaga: Sol. Energy Mater. Sol. Cells. 101 (2012) 147-153.

DOI: 10.1016/j.solmat.2012.02.031

Google Scholar

[2] J. Engman: Experimental study of Cu2ZnSn(Se, S)4 thin films for solar cell applications Student paper. Uppsala Universitet. (2011).

Google Scholar

[3] N. B. Mortazavi Amiri and A. V. Postnikov: J. Appl. Phys. 112 (2012) 033719-1 - 033719-12.

Google Scholar

[4] Susan Schorr, Alfons Weber, VeijoHonkimaki and Hans – Werner Schock: Thin solid films. 517 (2009) 2461 – 2464.

Google Scholar

[5] Alex Reginder and Susanne Siebentritt: Appl. Phys. LettVol. 97 (2010) 092111-1 - 092111-3.

Google Scholar

[6] K. Timmo, M. Altosaar, J. Raudoja, K. Muska, M. Pilvet, M. Kauk, T. Varema, M. Danilson, O. Volobujeva and E. Mellikov: Sol. Energy Mater. Sol. Cells. 94 (2010) 1889–1892.

DOI: 10.1016/j.solmat.2010.06.046

Google Scholar

[7] P. Salomé, P.A. Fernandes and A.F. da Cunha: Thin Solid Films. 517 (2009) 2531–2534.

DOI: 10.1016/j.tsf.2008.11.034

Google Scholar

[8] A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto and S.F. Bent: Thin Solid Films. 519 (2011) 2488–2492.

DOI: 10.1016/j.tsf.2010.11.040

Google Scholar

[9] P.Y. Lee, S.C. Shei and S.J. Chang: J. Alloys Compd. 574 (2013) 27–32.

Google Scholar

[10] R. Bhattacharyya, R.N. Gayen, R. Paul and A.K. Pal: Thin Solid Films. 517 (2009) 5530–5536.

DOI: 10.1016/j.tsf.2009.03.168

Google Scholar

[11] R. Swanepoel: J. Phys. E: Sci. Instrum. 16 (1983) 1214-1222.

Google Scholar

[12] Heiddy P. Quiroz, Sandra M. López, Jorge A. Calderón, A. Dussan and Fabio Buritica: Momentos de Ciencia 10 (2012).

Google Scholar

[13] Carl C. Koch, Ilya A. Ovid'ko, Sudipta Seal and Stan Veprek in: Structural Nanocrystalline Materials Fundamentals and application, Cambridge University Press, New York, (2007).

DOI: 10.1002/ange.200685538

Google Scholar

[14] A. Shah in: Thin-Film Silicon Solar Cells, edtied by EPFL Press, Italy, (2010).

Google Scholar

[15] Rachmat Wibowo, Woo Seok Kim, Eun Soo Lee, Badrul Munir, Kyoo Ho Kim. J. Phys. Chem. Solids. 68 (2007) 1908–(1913).

Google Scholar

[16] A. Dussan: Producción y caracterización de películas delgadas fotoconductoras de CdSe y compuesto ternario CdSxSe1-x Student paper, Universidad Nacional de Colombia (1997).

Google Scholar