Electrolyte Filling of Large-Scale Lithium-Ion Batteries: Challenges for Production Technology and Possible Approaches

Article Preview

Abstract:

Lithium-ion batteries have been the dominant energy storage technology in consumer electronics for several years and meanwhile advanced into e-mobility and stationary applications. The trend towards large-scale batteries presents manifold challenges to production technology. One decisive assembly process is filling electrolyte liquid into the battery case. This paper discusses the main influences and challenges for production technology concerning this crucial manufacturing process and how they are addressed. First preliminary results are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-18

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Boston Consulting Group, Batteries for electric cars, http: /www. bcg. com/documents/ file36615. pdf [18. 03. 2015].

Google Scholar

[2] K. -H. Pettinger, Fertigungstechnologien für Lithium-Ionen-Zellen, in: R. Korthauer, Handbuch Lithium-Ionen Batterien, Springer Vieweg, Berlin, Heidelberg, (2013).

DOI: 10.1007/978-3-642-30653-2_17

Google Scholar

[3] T.B. Reddy, D. Linden, Linden's handbook of batteries, 4th ed., McGraw-Hill, New York, (2011).

Google Scholar

[4] J. Kurfer, M. Westermeier, C. Tammer, G. Reinhart, Production of large-area lithium-ion cells – Preconditioning, cell stacking and quality assurance, CIRP Annals 61 (2012) 1, 1-4.

DOI: 10.1016/j.cirp.2012.03.101

Google Scholar

[5] K. In-Jung, K. Jong-Hee, L. Hyung-Kyu, Y. In-Seok, P. Seok-Jung, Apparatus and method for enhancing impregnation with electrolyte in secondary battery. U.S. patent 2013065111. (2012).

Google Scholar

[6] D.L. Wood III, J. Li, C. Daniel, Prospects for reducing the processing cost of lithium ion batteries, J Power Sources 275 (2015) 234-242.

DOI: 10.1016/j.jpowsour.2014.11.019

Google Scholar

[7] M.S. Wu, T.L. Lia, Y.Y. Wang, C.C. Wan, Assessment of the wettability of porous electrodes for lithium-ion batteries, J Applied Electrochemistry 34 (2004) 797-805.

DOI: 10.1023/b:jach.0000035599.56679.15

Google Scholar

[8] Y. Morizane, Method for electrolyte injection, U.S. Patent 6497976. (2002).

Google Scholar

[9] B. Reschke, Method for filling electrolyte into battery cell and apparatus for carrying out the method. U.S. patent 8047241. (2011).

Google Scholar

[10] C.R. Hohenthanner, A. Klien, Method and device for filling an electrochemical cell, Patent WO 2012069100. (2012).

Google Scholar

[11] T. Thönessen, G. Neumann, Method for filling electrochemical cells. Patent WO 2014/048918. (2014).

Google Scholar

[12] K. Takimoto, Y. Maekawa, Appartus and method for injecting liquid into container. U.S. patent 6706440. (2000).

Google Scholar

[13] G. Takayama, T. Erui, N. Kawamura, Manufacturing method of batteries. U.S. patent 6371996. (2002).

Google Scholar

[14] T. Knoche, F. Surek, G. Reinhart, A process model for the electrolyte filling of lithium-ion batteries, Proceedings of the 48th CIRP Conference on Manufacturing Systems (2015), in press.

DOI: 10.1016/j.procir.2015.12.044

Google Scholar

[15] A. Sakti, J.J. Michalek, E.R.H. Fuchs, J.F. Whitacre, A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J Power Sources 273 (2015) 966-980.

DOI: 10.1016/j.jpowsour.2014.09.078

Google Scholar

[16] Y. Sheng, C.R. Fell, Y.K. Son, B.M. Metz, J. Jiang, B.C. Church, Effect of calendering on electrode wettability in lithium-ion batteries, Front. Energy Res. 2: 56, (2014).

DOI: 10.3389/fenrg.2014.00056

Google Scholar

[17] R.S. Kühnel, S. Obeidi, M. Lübke, A. Lex-Balducci, A. Balducci, Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid, J Appl Electrochem 43 (2013) 697-704.

DOI: 10.1007/s10800-013-0558-x

Google Scholar

[18] S.G. Lee, D.H. Jeon, Effect of electrode compression on the wettability of lithium-ion batteries. J Power Sources 265 (2014) 363-369.

DOI: 10.1016/j.jpowsour.2014.04.127

Google Scholar

[19] W. Pfleging, R. Kohler, J. Pröll, Laser generated microstructures in tape cast electrodes for rapid electrolyte wetting: new technical approach for cost efficient battery manufacturing. Proc. SPIE 8968, laser-based micro- and nanoprocessing VIII, 89680B. (2014).

DOI: 10.1117/12.2039635

Google Scholar

[20] S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164 (2007) 351-364.

DOI: 10.1016/j.jpowsour.2006.10.065

Google Scholar

[21] P. Arora, Z. Zhang, Battery Separators, Chem. Rev. 104 (2004) 4419-4462.

Google Scholar

[22] J. Pröll, B. Schmitz, A. Niemöller, B. Robertz, M. Schäfer, M. Torge, P. Smyrek, H.J. Seifert, W. Pfleging, Femtosecond laser patterning of lithium-ion battery separator materials: impact on liquid electrolyte wetting and cell performance. Proc. SPIE 9351, laser-based micro- and nanoprocessing IX, 93511F-1. (2015).

DOI: 10.1117/12.2079018

Google Scholar

[23] K. Takada, Electrolyte injection device and electrolyte injection method. U.S. patent 2013/0029186. (2013).

Google Scholar

[24] Hecht T. Model-based electrolyte filling method. WO2013171057 (A1), (2013).

Google Scholar