Concept for Assessment of Manual-Assembly Technologies

Article Preview

Abstract:

The global competitive situation and change to customer market results in shorter product life cycles and high variant diversity as a consequence of customization. Especially in assembly systems the increasing complexity forces manufacturing companies to enhance their flexibility. In manual assembly systems the worker and the use of his cognitive skills provide the required flexibility and knowledge to perform the assembly process efficiently. The presented approach deals with an integrated technology management concept for manual assembly. Thereby, a special focus is set on support technologies which are aimed to support the cognitive skills of the worker. In the first step useful technologies have to be identified on the base of a specific search strategy. As soon as a potential technology is identified, the technology investigation starts. Core element in the concept is an impact analysis to assess the benefit of new support technologies in a specific manual assembly system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-50

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Meissner, M. Cadet, N. Stephan, C. Bohr, Model-Based Development Process of Cybertronic Products and Production Systems, in: M. Merklein, J. Franke, H. Hagenah (Eds. ), WGP Congress 2014 – Progress in Production Engineering, Trans Tech Publications Ltd, Switzerland, (2014).

DOI: 10.4028/www.scientific.net/amr.1018.539

Google Scholar

[2] B. Lotter, H. -P. Wiendahl, Montage in der industriellen Produktion, second ed., Springer-Verlag, Berlin Heidelberg, (2012).

Google Scholar

[3] G. Schuh, S. Klappert, Technologiemanagement – Handbuch Produktion und Management 2, second ed., Springer-Verlag, Berlin Heidelberg, (2011).

Google Scholar

[4] VDI Guideline 2860, Montage- und Handhabungstechnik; Handhabungsfunktionen, Handhabungseinrichtungen; Begriffe, Definitionen, Symbole, Beuth-Verlag, Berlin, (1990).

Google Scholar

[5] B. Lotter, Manufacturing assembly handbook, eBook, Elsevier Science, (2013).

Google Scholar

[6] U. Willnecker, Gestaltung und Planung leistungsorientierter manueller Fließmontage, Herbert Utz Verlag München, (2000).

Google Scholar

[7] A. M. Colman, A dictionary of psychology, Oxford university press, (2015).

Google Scholar

[8] F. E. Weinert, Competencies and Key Competencies: Educational Perspective, in: N. J. Smelser, P. B. Baltes (Eds. ), International Encyclopedia of the Social and Behavioral Sciences, Vol. 4, Elsevier, Amsterdam et al., 2433–2436.

DOI: 10.1016/b0-08-043076-7/02384-6

Google Scholar

[9] S. Stork, A. Schuboe, Cognition in Manual Assembly, KI 24 (2010) 305-309.

Google Scholar

[10] G. Reinhart, S. Schindler, Strategic evaluation of technology chains for producing companies, in: Enabling Manufacturing Competitiveness and Economic Sustainability, Springer, Berlin, Heidelberg, 2012, 391-396.

DOI: 10.1007/978-3-642-23860-4_64

Google Scholar

[11] J. Greitemann, C. Plehn, J. Koch, G. Reinhart, Strategic Screening of Manufacturing Technologies, in: M. F. Zaeh (Ed. ), 5th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2013), Springer International Publishing, Switzerland, (2014).

DOI: 10.1007/978-3-319-02054-9_54

Google Scholar

[12] G. Reinhart, S. Schindler, P. Krebs, Strategic Evaluation of Manufacturing Technologies, in: J. Hesselbach, C. Hermann (Eds. ), Glocalized Solutions for Sustainability in Manufacturing – Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Springer-Verlag, Berlin-Heidelberg, (2011).

DOI: 10.1007/978-3-642-19692-8_31

Google Scholar

[13] F. Klocke, K. Arntz, D. Heeschen, Decision-Making Process in Manufacturing Technology Planning for Small Scale Productions, in: System Sciences (HICSS), 2014, 47th Hawaii International Conference on IEEE, 836-845.

DOI: 10.1109/hicss.2014.111

Google Scholar

[14] G. Schuh, J. Schubert, M. Wellensiek, Model for the Valuation of a Technology Established in a Manufacturing System, in: Procedia CIRP 3, 2012, 602-607.

DOI: 10.1016/j.procir.2012.07.103

Google Scholar

[15] I. Ribeiro, P. Peças, E. Henriques, Life Cycle Engineering Framework for Technology and Manufacturing Processes Evaluation, in: Technology and Manufacturing Process Selection, Springer London, 2014, 217-237.

DOI: 10.1007/978-1-4471-5544-7_11

Google Scholar

[16] V. Binder, J. Kantowsky, Technologiepotentiale – Neuausrichtung der Gestaltungsfelder des Strategischen Technologiemanagements, Deutscher Universitätsverlag Wiesbaden, (1996).

DOI: 10.1007/978-3-663-09032-8_2

Google Scholar

[17] ISO Guideline 16290: 2013 (E), Space systems – Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment, Beuth-Verlag, Berlin, (2013).

Google Scholar