Innovative Simulation Technology for Real-Time Calculation of the Thermo-Elastic Behaviour of Machine Tools in Motion

Article Preview

Abstract:

Heat resulting from motors, moved contacts as well as cutting processes, causes time-dependent deformation of machine structures that reduces the precision of machine tools. For design optimization and especially for correction of thermal induced displacements, it is necessary to have compact models, which allow fast simulation of the thermo-elastic behaviour of the entire moving machine tool during the process. This paper presents an innovative simulation technology that permits, starting from CAD geometry through FE modelling, to come to a time-saving thermo-elastic calculation model of entire moved machine tools. Thereby, calculated temperature and deformation fields are of high geometrical resolution. Results and potentials of the new approach are demonstrated on example of a Hexapod machine tool.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-370

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mayr, J. Jedrzejewski, E. Uhlmann, M.A. Donmez, W. Knapp, F. Härtig, K. Wendt, et al., Thermal issues in machine tools, CIRP Annals-Manufacturing Technology. 61 (2012) 771-791.

DOI: 10.1016/j.cirp.2012.05.008

Google Scholar

[2] K. Großmann, Thermo-energetic Design of Machine Tools, Springer, Berlin, (2015).

Google Scholar

[3] M. Ess, Simulation and Compensation of Thermal Errors of Machine Tools, Dissertation, VDI, Zürich, (2012).

Google Scholar

[4] U. Heisel, W. Maier, Reduktion thermischer FEM-Simulationsmodelle, wt online. 102 (2012) 2-9.

DOI: 10.37544/1436-4980-2012-1-2-2

Google Scholar

[5] Ch. Großmann, H.G. Roos, M. Stynes, Numerical Treatment of Partial Differential Equations, Springer, Heidelberg, (2006).

Google Scholar

[6] S. Vey, A. Voigt, AMDiS – adaptive multidimensional simulations. Computing and Visualization in Science. 10 (2007) 57–67.

DOI: 10.1007/s00791-006-0048-3

Google Scholar

[7] Z. Sun, A. Dadalau, A. Verl, Component oriented and automatic generation of FE models for parallel kinematics, Production Engineering. 7 (2013) 233-237.

DOI: 10.1007/s11740-012-0440-4

Google Scholar

[8] M. Partzsch, M. Beitelschmidt, An arithmetic correction for avoiding non-uniform heat input distribution caused by translational motions within time-discrete thermal analyses, in: Proceedings of 12th Biennial Conference on Engineering Systems Design and Analysis. Kopenhagen, (2014).

DOI: 10.1115/esda2014-20239

Google Scholar

[9] J. Glänzel, Korrektur thermoelastischer Verformungen durch den Einsatz der adaptiven FEM, Dissertation, Wissenschaftliche Scripten, Auerbach, (2014).

Google Scholar

[10] G. Jungnickel, Simulation des thermischen Verhaltens von Werkzeugmaschinen, Verlag der TU Dresden, Dresden, (2000).

Google Scholar

[11] W.H.A. Schilders, H.A. Van der Vorst, J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications, Springer, Berlin, (2008).

DOI: 10.1007/978-3-540-78841-6

Google Scholar

[12] A. Galant, K. Großmann, A. Mühl, Thermo-elastic simulation of entire machine tool, in: K. Großmann (Eds. ), Thermo-energetic Design of Machine Tools, Springer, Berlin, 2015, pp.69-84.

DOI: 10.1007/978-3-319-12625-8_7

Google Scholar

[13] J. P. Merlet, Parallel Robots, second ed., Springer, Dordrecht, (2006).

Google Scholar

[14] X. Thiem, K. Großmann, A. Mühl, Modular control integrated correction of thermoelastic errors of machine tools based on the thermoelastic functional chain, Advanced Materials Research, 2014 WGP Congress. 1018 (2014) 411-418.

DOI: 10.4028/www.scientific.net/amr.1018.411

Google Scholar

[15] K. Großmann, A. Galant, M. Merx, M. Riedel, Methodology for the efficient analysis of thermal and thermo-elastic behaviour of machine tools, Advanced Materials Research, 2014 WGP Congress. 1018 (2014) 395-402.

DOI: 10.4028/www.scientific.net/amr.1018.395

Google Scholar