Uncertain Parameters in Thermal Machine-Tool Models and Methods to Design their Metrological Adjustment Process

Article Preview

Abstract:

The measures taken to improve the thermal behaviour of machine tools are based on thermal models. The models are applied to support the design process and to correct the machine tool operation in a control-based way. Especially the models for correction purposes include uncertain parameters that cannot be estimated with sufficient accuracy. Thus these parameters have to be adjusted by means of measurements. During the adjustment process, a broad diversity of machine behaviour and model characteristics has to be taken in to account. Therefore, substantial time, effort and expert knowledge are required. To identify the key expenses, a generalized and systematic analysis of the adjustment process was carried out. First, the typical design of the models, the parameters of the sub models and the current adjustment procedure were investigated. Based on the results of the analysis, support requirements were identified. Afterwards first methods and software tools for efficient support were developed. This strategy is demonstrated using the example of a hexapod strut model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

379-386

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mayr, J Jedrzejewski, E Uhlmann, MA Donmez, F Hartig, K Wendt, T Morwaki, P Shore, R Schmitt, C Brecher, T Wurz, K Wegener, Thermal issues in machine tools, CIRP Ann 61(2012), p.771–791.

DOI: 10.1016/j.cirp.2012.05.008

Google Scholar

[2] B. Denkena, K. -H. Scharschmidt, Modellbasierte Temperaturkompensation für Werkzeug-maschinen, ZWF 104 (2009) 9, pp.698-702.

DOI: 10.3139/104.110147

Google Scholar

[3] A. Galant, K. Großmann, A. Mühl, Thermo-elastic simulation of entire machine tool, Thermo-energetic Design of Machine Tools, Heidelberg: Springer, 2014, p.69–84.

DOI: 10.1007/978-3-319-12625-8_7

Google Scholar

[4] K. Bakarinow, C. Brecher, D. Haber, M. Fey. Investigation of Components and Assembly Groups. Thermo-energetic Design of Machine Tools, Berlin; 2014, p.135–44.

DOI: 10.1007/978-3-319-12625-8_12

Google Scholar

[5] B. Kauschinger, St. Schroeder, Methods to design the adjustment of parameters for thermal machine-tool models, Advanced Materials Research, 1018, (2014).

DOI: 10.4028/www.scientific.net/amr.1018.403

Google Scholar

[6] K. Großmann, S. Rehn, Wärmestrommessung zur Berücksichtigung des Umgebungseinflusses, Thermische Simulation von Werkzeugmaschinen, ZWF, 2011 (4), pp.249-254.

DOI: 10.3139/104.110383

Google Scholar

[7] S. Winkler, R. Werner, Thermo-energetic motor optimization, Thermo-energetic Design of Machine Tools, Springer International Publishing, 2014, p.223–32.

DOI: 10.1007/978-3-319-12625-8_19

Google Scholar

[8] K. Großmann, B. Kauschinger, C. Städel, S. Schroeder, M. Koch, Wärmeübertragung in Aluminium-Leichtbaustrukturen. 2. Kolloquium des SFB/TR 96, Chemnitz.

Google Scholar

[9] G. Jungnickel, Instationäres thermoelastisches Verhalten von Vorschubachsen mit bewegtem Wälzkontakt. Schriftenreihe des Lehrstuhls für Werkzeugmaschinen, TU Dresden, (2003).

Google Scholar

[10] K. Großmann, S. Rehn, A. Mühl, Thermische Simulation von Werkzeugmaschinen, Ersatzmodelle zur Beschreibung konvektiver Wärmeübertragung in Gestellinnenräumen. ZWF, 2012, 107(5), p.315–21.

DOI: 10.3139/104.110752

Google Scholar

[11] F. James, M. Roos, Minuit, A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Computer Physics Communications, 10(6), 343-367.

DOI: 10.1016/0010-4655(75)90039-9

Google Scholar

[12] Newville, Matthew, Stensitzki, Till, Allen, Daniel B., Ingargiola, Antonino, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, 2014, DOI 10. 5281/zenodo. 11813.

Google Scholar