Application of Fractal Geometry in the Evaluation of Surface Microtexture of Soil Particles

Article Preview

Abstract:

The shape of particles building the solid phase of soils is an important factor influencing soil behaviour. Three parameters defining the characteristics of particle shape: roundness, angularity and texture are the most commonly analyzed. The most difficult issue is texture determination due to its complex nature. Quantitative evaluation of this parameter creates serious problems, however, is not impossible. A new mathematical tool, such as fractal geometry, may be helpful. Through the use of power law, fractal analysis allows to designate fractal dimension that specifies the complexity of the tested object.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-245

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Avnir, O. Biham, D. Lidar, Malcai, Is the geometry of nature fractal? Science. 279 (1998) 39-40.

DOI: 10.1126/science.279.5347.39

Google Scholar

[2] P.J. Barrett, The shape rock particles, a critical review, Sedimentology. 27 (1980) 291-303.

DOI: 10.1111/j.1365-3091.1980.tb01179.x

Google Scholar

[3] F. D. Bianchi, R. D. Bonetto, FERImage: an interactive program for fractal dimension, dper and dmin calculation, Scanning. 23 (2001) 193-197.

DOI: 10.1002/sca.4950230305

Google Scholar

[4] C.R.I. Clayton, C.O.R. Abbiredy, R. Schiebel, A method of estimating the form of coarse particulates, Geotechnique. 59 (2009) 493-501.

DOI: 10.1680/geot.2007.00195

Google Scholar

[5] M. Ćwik, K. Jóźwiak, A. Mariański, Introduction to the application of the theory of chaos in risk management (Wprowadzenie do zastosowania teorii chaosu w zarządzaniu ryzykiem), Zeszyty Naukowe Politechniki Śląskiej, Organizacja i Zarządzanie. 57 (2011).

Google Scholar

[6] T. J. Dennis, N. G. Dessipris, Fractal modelling in image texture analysis, Radar and Signal Processing, IEE Proceedings F. 136 (1989) 227-235.

DOI: 10.1049/ip-f-2.1989.0036

Google Scholar

[7] H. M. French, The Periglacial Environment, 3rd ed. Wiley, Chichester. (2007).

Google Scholar

[8] M. K. Hassan, J. Kurths J., Can randomness alone tune the fractal dimension?, Physica A. 315 (2002) 342-352.

DOI: 10.1016/s0378-4371(02)01242-6

Google Scholar

[9] U. C. Herzfeld, C. Overbeck, Analysis and simulation of scale-dependent fractal surfaces with application to seafloor morphology, Computers & Geosciences. 25 (1999) 979-1007.

DOI: 10.1016/s0098-3004(99)00062-x

Google Scholar

[10] J. Konkol, The application of fractal geometry for the evaluation of building materials (Wykorzystanie geometrii fraktalnej do oceny materiałów budowlanych), Izolacje. VII/VIII (2011) 17-24. (in Polish).

Google Scholar

[11] D. H. Krinsley, J. C. Doornkamp, Atlas of quartz sand surface textures, Cambrige Univ. Press. (1973).

Google Scholar

[12] J. Kudrewicz, Fractals and chaos (Fraktale i chaos), Wydawnictwo Naukowo-Techniczne, Warszawa. 2007. (in Polish).

Google Scholar

[13] W. C. Mahaney, Atlas of sand grain surface textures and applications, Oxford Univ. Press. (2002).

Google Scholar

[14] B. B. Mandelbrot, The fractal geometry of nature. Freeman and Company, New York. (1983).

Google Scholar

[15] E. Mycielska-Dowgiałło, The influence of climatic conditions on the structural and textural characteristics of mineral deposits (Wpływ warunków klimatycznych na cechy strukturalne i teksturalne osadów mineralnych), in: A. Karczewski, Z. Zwoliński (Eds. ) – The functioning of geosystems under different morphoclimatic conditions - monitoring, security, education (Funkcjonowanie geosystemów w zróżnicowanych warunkach morfoklimatycznych – monitoring, ochrona, edukacja), Poznań. (2001).

Google Scholar

[16] E. S. Oczeretko, Fractal dimension in the analysis of biomedical signals and images (Wymiar fraktalny w analizie sygnałów i obrazów biomedycznych), Wydawnictwo Uniwersytetu w Białymstoku, Białystok. 2006. (in Polish).

Google Scholar

[17] Z. Omiotek, Application of fractal dimension to contour analysis of objects (Zastosowanie wymiaru fraktalnego do analizy konturu obiektów), Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2 (2012) 8-11. (in Polish).

DOI: 10.5604/20830157.1121333

Google Scholar

[18] H. O. Peitgen, H. Jürgens, D. Saupe, The boundaries of chaos. Fractals. Part 1 (Granice chaosu. Fraktale. Część 1), Wydawnictwo Naukowe PWN, Warszawa. 1997. (in Polish).

Google Scholar

[19] K. C. Rose, J. K. Hart, Subglacial comminution in the deforming bed: Inferences from SEM analysis, Sediment. Geol. 20 (2008) 87–97.

DOI: 10.1016/j.sedgeo.2007.11.003

Google Scholar

[20] M. Sharp, B. Gomez, Processes of debris comminution in the glacial environment and implication for quartz sand grain micromorphology, Sediment Geol. 4 (1986) 33–47.

DOI: 10.1016/0037-0738(86)90004-7

Google Scholar

[21] B. J. Super, A. C. Bovik, Localized measurement of image fractal dimension using Gabor filters, J. Vis. Commun. Image R. 2 (1991) 114-128.

DOI: 10.1016/1047-3203(91)90002-w

Google Scholar

[22] S. Szerakowska, Parameters describing soil particle shape and analytical methods of their determination (Parametry kształtu ziaren gruntowych oraz analityczne sposoby ich wyznaczania), Przegląd Geologiczny. 62 (2014) 704-714. (in Polish).

Google Scholar

[23] P. Tolppanen, O. Stephansson, L. Stenlid, 3-D degradation analysis of railroad ballast, B. Eng. Geol. Environ. 61 (2002) 35-42.

DOI: 10.1007/s100640100140

Google Scholar

[24] B. Woronko, Micromorphology of quartz grains as a tool in the reconstruction of periglacial environment, in: P. Churski (Eds. ) – Contemporary Issues in Polish Geography. (2012) 111-131.

Google Scholar

[25] T. Xu, I. D. Moore, J. C. Gallant, Fractals, fractal dimensions and landscapes – a review, Geomorphology. 8 (1993) 245-262.

DOI: 10.1016/0169-555x(93)90022-t

Google Scholar