Comparison of Selected Meshless Methods for Analysis of Steady, Fully-Developed, Laminar Flow of an Incompressible Newtonian Fluid in Internally Finned Tubes

Article Preview

Abstract:

Fluid flow in internally finned tubes is a very important problem from a practical point of view. In the literature there are many different numerical methods which were used for analysis this problem. However to the best knowledge of the authors of the present paper there are no so many papers in which meshless methods were applied for this purpose. The main advantages of these methods are: easy implementation, semi-analytical form of the approximate solution and no need for mesh generation. In the paper these meshless methods are compared in application for analysis of incompressible, fully-developed, Newtonian fluid flow in an internally finned tube.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-281

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.A. Çengel, Heat transfer. A practical approach, McGraw-Hill, New York, (2003).

Google Scholar

[2] J.P. Holman, Heat transfer, McGraw-Hill, Boston, (2002).

Google Scholar

[3] J.H. Masliyah, K. Nandakumar, Heat transfer in internally finned tubes, J. Heat Transfer 98 (1976) 257-261.

DOI: 10.1115/1.3450528

Google Scholar

[4] G. Fabbri, Heat transfer optimization in internally finned tubes under laminar flow, Int. J. Heat Mass Transfer 41 (1998) 1243-1253.

DOI: 10.1016/s0017-9310(97)00209-3

Google Scholar

[5] G. Fabbri, Optimum profiles for asymmetrical longitudinal fins in cylindrical ducts, Int. J. Heat Mass Transfer 42 (1999) 511-523.

DOI: 10.1016/s0017-9310(98)00179-3

Google Scholar

[6] H.M. Soliman, T.S. Chau, A.C. Trupp, Analysis of laminar heat transfer in internally finned tubes with uniform outside wall temperature, J. Heat Transfer 102 (1980) 598-604.

DOI: 10.1115/1.3244358

Google Scholar

[7] I.M. Ruston, H.M. Soliman, Forced convection in the entrance region of tubes with longitudinal internal fins, J. Heat Transfer 110 (1988) 310-313.

DOI: 10.1115/1.3250485

Google Scholar

[8] I.J. Kettner, D. Degani, G. Gutfinger, Numerical study of heat transfer in internally finned tubes, Num. Heat Transfer A-Appl. 20 (1991) 159-180.

DOI: 10.1080/10407789108944815

Google Scholar

[9] G.A. Lendeza, A. Camp, Computation of the Nusselt number asymptotes for laminar convection flows in internally finned tubes, Int. Commun. Heat Mass Transfer 26 (1999) 399-409.

DOI: 10.1016/s0735-1933(99)00026-3

Google Scholar

[10] O. Zeitoun, A.S. Hegazy, Heat transfer for laminar flow in internally finned pipes with different fin heights and uniform wall temperature, Heat Mass Transfer 40 (2004), 253-259.

DOI: 10.1007/s00231-003-0446-8

Google Scholar

[11] A. Al-Sarkhi, E. Abu-Nada, Characteristics of forced convection heat transfer in vertical internally finned tube, Int. Commun. Heat Mass Transfer 32 (2005) 557-564.

DOI: 10.1016/j.icheatmasstransfer.2004.03.015

Google Scholar

[12] E. Trefftz, Ein Gegenstück zum Ritzchen Verfahren, in: Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, 1926, pp.131-137.

Google Scholar

[13] J.A. Kołodziej, A.P. Zieliński, Boundary collocation techniques and their application in engineering, WITPress, Southampton, Boston, (2009).

Google Scholar

[14] J.A. Kołodziej, A. Uściłowska, Trefftz-type procedure for Laplace equation on domains with circular holes, circular inclusions, corners, slits, and symmetry, Comput. Assisted Mech. Eng. Sci. 4 (1997) 507-519.

Google Scholar

[15] J.A. Kołodziej, T. Stręk, Analytical approximations of the shape factors for conductive heat flow in circular and regular polygonal cross-sections, Int. J. Heat Mass Transfer 44 (2001) 999-1012.

DOI: 10.1016/s0017-9310(00)00162-9

Google Scholar

[16] J.A. Kołodziej, A. Uściłowska, M. Ciałkowski, Semi-analytical approximations of the laminar friction coefficients for flow in conduits with polygonal cross-section, Acta Mech. 158 (2002) 127-144.

DOI: 10.1007/bf01176904

Google Scholar

[17] J.A. Kołodziej, A. Fraska, Elastic torsion of bars possessing regular polygon in cross-section using BCM, Compt. Struct. 84 (2005) 78-91.

DOI: 10.1016/j.compstruc.2005.03.015

Google Scholar

[18] V.D. Kupradze, M.A. Aleksidze, Approximate method of solving certain boundary-value problems, Soobshch Akad. Nauk Gruz. SSR 30 (1963) 529-536 (in Russian).

Google Scholar

[19] V.D. Kupradze, M.A. Aleksidze, The method of fundamental equations for an approximate solution of certain boundary value problems, USSR Comput. Math. Comput. Phys. 4 (1964) 683-715.

DOI: 10.1016/0041-5553(64)90006-0

Google Scholar

[20] G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math. 9 (1998) 69-95.

Google Scholar

[21] G. Fairweather, A. Karageorghis, P.A. Martin, The method of fundamental solutions for scattering and radiation problems, Eng. Anal. Bound. Elem. 27 (2003) 759-769.

DOI: 10.1016/s0955-7997(03)00017-1

Google Scholar

[22] M.A. Golberg, C.S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems, in: M.A. Golberg (ed. ), Boundary integral methods – numerical and mathematical aspects, Computational Mechanics Publications, Boston, 1998, pp.103-176.

Google Scholar

[23] E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics – I surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990), 127-145.

DOI: 10.1016/0898-1221(90)90270-t

Google Scholar

[24] E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics – II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990), 147-161.

DOI: 10.1016/0898-1221(90)90271-k

Google Scholar

[25] Y. -C. Hon, X.Z. Mao, An efficient numerical scheme for Burgers' equation, Appl. Math. Comput. 95 (1998) 155-165.

Google Scholar

[26] M. Zerroukat, H. Power, C.S. Chen, A numerical method for heat transfer problems using collocation and radial basis functions, Int. J. Numer. Meth. Eng. 42 (1998) 1263-1278.

DOI: 10.1002/(sici)1097-0207(19980815)42:7<1263::aid-nme431>3.0.co;2-i

Google Scholar

[27] W. Chen, L. Ye, H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl. 59 (2010) 1614-1620.

Google Scholar