[1]
Y.A. Çengel, Heat transfer. A practical approach, McGraw-Hill, New York, (2003).
Google Scholar
[2]
J.P. Holman, Heat transfer, McGraw-Hill, Boston, (2002).
Google Scholar
[3]
J.H. Masliyah, K. Nandakumar, Heat transfer in internally finned tubes, J. Heat Transfer 98 (1976) 257-261.
DOI: 10.1115/1.3450528
Google Scholar
[4]
G. Fabbri, Heat transfer optimization in internally finned tubes under laminar flow, Int. J. Heat Mass Transfer 41 (1998) 1243-1253.
DOI: 10.1016/s0017-9310(97)00209-3
Google Scholar
[5]
G. Fabbri, Optimum profiles for asymmetrical longitudinal fins in cylindrical ducts, Int. J. Heat Mass Transfer 42 (1999) 511-523.
DOI: 10.1016/s0017-9310(98)00179-3
Google Scholar
[6]
H.M. Soliman, T.S. Chau, A.C. Trupp, Analysis of laminar heat transfer in internally finned tubes with uniform outside wall temperature, J. Heat Transfer 102 (1980) 598-604.
DOI: 10.1115/1.3244358
Google Scholar
[7]
I.M. Ruston, H.M. Soliman, Forced convection in the entrance region of tubes with longitudinal internal fins, J. Heat Transfer 110 (1988) 310-313.
DOI: 10.1115/1.3250485
Google Scholar
[8]
I.J. Kettner, D. Degani, G. Gutfinger, Numerical study of heat transfer in internally finned tubes, Num. Heat Transfer A-Appl. 20 (1991) 159-180.
DOI: 10.1080/10407789108944815
Google Scholar
[9]
G.A. Lendeza, A. Camp, Computation of the Nusselt number asymptotes for laminar convection flows in internally finned tubes, Int. Commun. Heat Mass Transfer 26 (1999) 399-409.
DOI: 10.1016/s0735-1933(99)00026-3
Google Scholar
[10]
O. Zeitoun, A.S. Hegazy, Heat transfer for laminar flow in internally finned pipes with different fin heights and uniform wall temperature, Heat Mass Transfer 40 (2004), 253-259.
DOI: 10.1007/s00231-003-0446-8
Google Scholar
[11]
A. Al-Sarkhi, E. Abu-Nada, Characteristics of forced convection heat transfer in vertical internally finned tube, Int. Commun. Heat Mass Transfer 32 (2005) 557-564.
DOI: 10.1016/j.icheatmasstransfer.2004.03.015
Google Scholar
[12]
E. Trefftz, Ein Gegenstück zum Ritzchen Verfahren, in: Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, 1926, pp.131-137.
Google Scholar
[13]
J.A. Kołodziej, A.P. Zieliński, Boundary collocation techniques and their application in engineering, WITPress, Southampton, Boston, (2009).
Google Scholar
[14]
J.A. Kołodziej, A. Uściłowska, Trefftz-type procedure for Laplace equation on domains with circular holes, circular inclusions, corners, slits, and symmetry, Comput. Assisted Mech. Eng. Sci. 4 (1997) 507-519.
Google Scholar
[15]
J.A. Kołodziej, T. Stręk, Analytical approximations of the shape factors for conductive heat flow in circular and regular polygonal cross-sections, Int. J. Heat Mass Transfer 44 (2001) 999-1012.
DOI: 10.1016/s0017-9310(00)00162-9
Google Scholar
[16]
J.A. Kołodziej, A. Uściłowska, M. Ciałkowski, Semi-analytical approximations of the laminar friction coefficients for flow in conduits with polygonal cross-section, Acta Mech. 158 (2002) 127-144.
DOI: 10.1007/bf01176904
Google Scholar
[17]
J.A. Kołodziej, A. Fraska, Elastic torsion of bars possessing regular polygon in cross-section using BCM, Compt. Struct. 84 (2005) 78-91.
DOI: 10.1016/j.compstruc.2005.03.015
Google Scholar
[18]
V.D. Kupradze, M.A. Aleksidze, Approximate method of solving certain boundary-value problems, Soobshch Akad. Nauk Gruz. SSR 30 (1963) 529-536 (in Russian).
Google Scholar
[19]
V.D. Kupradze, M.A. Aleksidze, The method of fundamental equations for an approximate solution of certain boundary value problems, USSR Comput. Math. Comput. Phys. 4 (1964) 683-715.
DOI: 10.1016/0041-5553(64)90006-0
Google Scholar
[20]
G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math. 9 (1998) 69-95.
Google Scholar
[21]
G. Fairweather, A. Karageorghis, P.A. Martin, The method of fundamental solutions for scattering and radiation problems, Eng. Anal. Bound. Elem. 27 (2003) 759-769.
DOI: 10.1016/s0955-7997(03)00017-1
Google Scholar
[22]
M.A. Golberg, C.S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems, in: M.A. Golberg (ed. ), Boundary integral methods – numerical and mathematical aspects, Computational Mechanics Publications, Boston, 1998, pp.103-176.
Google Scholar
[23]
E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics – I surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990), 127-145.
DOI: 10.1016/0898-1221(90)90270-t
Google Scholar
[24]
E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics – II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990), 147-161.
DOI: 10.1016/0898-1221(90)90271-k
Google Scholar
[25]
Y. -C. Hon, X.Z. Mao, An efficient numerical scheme for Burgers' equation, Appl. Math. Comput. 95 (1998) 155-165.
Google Scholar
[26]
M. Zerroukat, H. Power, C.S. Chen, A numerical method for heat transfer problems using collocation and radial basis functions, Int. J. Numer. Meth. Eng. 42 (1998) 1263-1278.
DOI: 10.1002/(sici)1097-0207(19980815)42:7<1263::aid-nme431>3.0.co;2-i
Google Scholar
[27]
W. Chen, L. Ye, H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl. 59 (2010) 1614-1620.
Google Scholar