[1]
F. D. Fiscer, F. G. Rammerstorfer. A Refined Analysis of Sloshing Effects in Seismically Excited Tanks. International Journal of Pressure Vessels and Piping. 76 (1999) 693–709.
DOI: 10.1016/s0308-0161(99)00047-2
Google Scholar
[2]
H. Shakib, F. Omidinasab. Effect of Earthquake Characteristics on Seismic Performance of RC Elevated Water Tanks Considering Fluid Level within the Vessels. Arabian Journal of Science Engineering. 36 (2011) 227–243.
DOI: 10.1007/s13369-010-0029-1
Google Scholar
[3]
C. -H. Wu, O. M. Faltinsen, B. -F. Chen. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Computers & Fluids, 63 (2012) 9–26.
DOI: 10.1016/j.compfluid.2012.02.018
Google Scholar
[4]
C. G. Koh, M. Luo, M. Gao, W. Bai. Modelling of liquid sloshing with constrained floating baffle. Computers & Structures, 122 (2013) 270–279.
DOI: 10.1016/j.compstruc.2013.03.018
Google Scholar
[5]
H. Akyildiz, M. S. Çelebi. Numerical Computation of Hydrodynamic Loads on Walls of a Rigid Rectangular Tank Due to Large Amplitude Liquid Sloshing. Turkish Journal of Engineering and Environment, 26 (2002) 429–445.
Google Scholar
[6]
N. E. Syroedov, Yu. A. Muzychenko, V. G. Petuhov, V. G. Pavlyukov, Yu. S. Hohlachev. USSR patent 1599272 (1990).
Google Scholar
[7]
L. F. Reber. Canadian patent 1314300 (1993).
Google Scholar
[8]
A. Dasgupta. Effect of Tank Cross-Section and Longitudinal Baffles on Transient Liquid Slosh in Partly-Filled Road Tankers: A Thesis of the Requirements For the Degree of Master of Applied Science (Mechanical Engineering), Montreal: Concordia University, (2011).
Google Scholar
[9]
T. A. Rogers, T. A. Rogers. U. S. patent 4483454 (1987).
Google Scholar
[10]
K. C. Biswal, S. K. Bhattacharyya, P. K. Sihna. Free-Vibration Analysis of Liquid-Filled Tank With Baffles. Journal of Sound and Vibration, 259(1) (2003) 177–192.
DOI: 10.1006/jsvi.2002.5087
Google Scholar
[11]
G. Yan, S. Rakheja. Straight-line braking dynamic analysis of a partly filled baffled and unbaffled tank truck. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223 (1) (2009) 11–26.
DOI: 10.1243/09544070jauto973
Google Scholar
[12]
B. Molin, F. Remy. Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen. Journal of Fluids and Structures, 43 (2013) 462–480.
DOI: 10.1016/j.jfluidstructs.2013.10.001
Google Scholar
[13]
E. A. Keller, S. S. Gorbunov, S. M. Fankevich. USSR authorship 1055691 (1983).
Google Scholar
[14]
S. M. Hasheminejad, M. Aghabeigi. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles. Applied Mathematical Modelling, 36/1 (2012) 57–71.
DOI: 10.1016/j.apm.2011.02.026
Google Scholar
[15]
A. Shimanovsky. Design solutions ensuring safety of road tanks movement (review). Problems of machine building and automatization, 1 (2009) 44–59.
Google Scholar
[16]
R. L. Fowler. U. S. patent 002724597 (1955).
Google Scholar
[17]
V. E. Troinin, I. M. Zaytsev, G. E. Abakein, V. F. Konahin. USSR authorship 0981121 (1982).
Google Scholar
[18]
A. Shimanovsky, M. Kuzniatsova, A. Sapietova. Modeling of Newtonian and Non-Newtonian Liquid Sloshing in Road Tanks while Braking. Applied Mechanics and Materials, 611 (2014) 137–144.
DOI: 10.4028/www.scientific.net/amm.611.137
Google Scholar
[19]
A. Shimanovsky, M. Kuzniatsova. Hydrodynamic loading of tank baffles at transporting of liquids with different rheological properties. Materials. Technologies. Instruments, 4 (2013) 18–21.
Google Scholar
[20]
M. Kuzniatsova. 3D modeling of liquid oscillations in reservoirs with perforated baffles. Technolog, 4 (2013) 103–106.
Google Scholar
[21]
D. A. Anderson, J. C. Tannehill, R. H. Pletcher. Computational fluid mechanics and heat transfer. New York: McGraw-Hill, (1984).
Google Scholar