[1]
B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials, Material Science and Engineering A, 362, 2003, 81-106.
DOI: 10.1016/s0921-5093(03)00578-1
Google Scholar
[2]
X. -F. Li, A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams, Journal of Sound and Vibration, Volume 318, 2008, 1210-1229.
DOI: 10.1016/j.jsv.2008.04.056
Google Scholar
[3]
S.A. Sina, H.M. Navazi, H. Haddadpour, An analytical method for free vibration analysis of functionally graded beams, Materials & Design, Volume 30, 2009, 741-747.
DOI: 10.1016/j.matdes.2008.05.015
Google Scholar
[4]
Metin Aydogdu, Vedat Taskin, Free vibration analysis of functionally graded beams with simply supported edges, Materials & Design, Volume 28, 2007, 1651-1656.
DOI: 10.1016/j.matdes.2006.02.007
Google Scholar
[5]
H.J. Xiang, J. Yang, Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction, Composites Part B: Engineering, Volume 39, 2008, 292-303.
DOI: 10.1016/j.compositesb.2007.01.005
Google Scholar
[6]
Rajesh K. Bhangale, N. Ganesan, Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core, Journal of Sound and Vibration, Volume 295, 2006, 294-316.
DOI: 10.1016/j.jsv.2006.01.026
Google Scholar
[7]
X. L. Jia, J. Yang, S. Kitipornchai, C. W Lim, Forced Vibration of Electrically Actuated FGM Micro-Switches, Procedia Engineering, Volume 14, 2011, 280-287.
DOI: 10.1016/j.proeng.2011.07.034
Google Scholar
[8]
Liao-Liang Ke, Yue-Sheng Wang, Jie Yang, Sritawat Kitipornchai, Nonlinear free vibration of size-dependent functionally graded microbeams, International Journal of Engineering Science, Volume 50, 2012, 256-267.
DOI: 10.1016/j.ijengsci.2010.12.008
Google Scholar
[9]
Ting-Chiang Tsai, Jia-Hau Tsau, Chun-Sheng Chen, Vibration analysis of a beam with partially distributed internal viscous damping, International Journal of Mechanical Sciences, Volume 51, 2009, 907-914.
DOI: 10.1016/j.ijmecsci.2009.09.039
Google Scholar
[10]
Xie Z, Shepard Jr. WS, An enhanced beam model for constrained layer damping and a parameter study of damping contribution, Journal of Sound and Vibration, volume 319, 2009 , 1271–84.
DOI: 10.1016/j.jsv.2008.06.041
Google Scholar
[11]
Sorrentino S, Fasana A, Marchesiello S, Analysis of non-homogeneous Timoshenko beams with generalized damping distributions, Journal of Sound and Vibration, volume 304, 2007, 779–92.
DOI: 10.1016/j.jsv.2007.03.038
Google Scholar
[12]
Han SM, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and vibration (1999); 225(5): 935-988.
DOI: 10.1006/jsvi.1999.2257
Google Scholar
[13]
Meirovitch L. Analytical methods in vibrations. New York: MacMillan; (1967).
Google Scholar
[14]
Wakashima K, Hirano T, Niino M. Space applications of advanced structural materials (1990). ESA SP 303, 97.
Google Scholar
[15]
K. Sanjay Anandrao, R.K. Gupta, P. Ramachandran, and G. Venkateswara Rao, Free Vibration Analysis of Functionally Graded Beams, Defence Science Journal, Vol. 62, No. 3, 2012, pp.139-146.
DOI: 10.14429/dsj.62.1326
Google Scholar