Improving Efficiency of End Mills by Deposition of Modifying Nano-Scale Multilayer Composite Coatings

Article Preview

Abstract:

The study considers the challenge of improving the efficiency of end mills made of carbides through modification of physical and mechanical properties of tools by forming nanostructured multilayer composite coatings on its working surfaces with the use of filtered cathodic vacuum-arc deposition (FCVAD). The system and structure of three-component nanostructured multilayer composite modifying coatings for deposition on the working surfaces of the end mills are developed. The study presents the results of laboratory and industrial tests of end mills with coatings designed for conditions for rough and finish machining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

351-356

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hui-Wen Chang, Ping-Kang Huang, Jien-Wei Yeh, Andrew Davison, Chun-Huai Tsau, Chih-Chao Yang: Surface and Coatings Technology Vol. 202 (2008), p.3360.

Google Scholar

[2] A. S. Vereshchaka: The efficiency of the cutting tool with wear-resistant coatings. (Mashinostroenie, Russia 1993).

Google Scholar

[3] V.P. Tabakov: Formation of wear-resistant ion-plasma coatings for cutting tools. (Mashinostroenie, Russia 2008).

Google Scholar

[4] M.F. Poletika: Contact load on the cutting tool surface. (Mashgiz, Russia 1962).

Google Scholar

[5] D.E. Kirushin, T.G. Nasad: SGTU, Saratov (2006), p.101.

Google Scholar

[6] S. N. Grigoriev, A.A. Vereschaka, A.S. Vereschaka, A.A. Kutin.: Procedia CIRP 1 ( 2012 ) p.318 – 323.

DOI: 10.1016/j.procir.2012.04.054

Google Scholar

[7] A. A. Vereschaka, A. S. Vereschaka, S. N. Grigoriev, D.V. Sladkov.: Applied Mechanics and Materials Vol. 325-326 (2013) pp.1454-1459.

DOI: 10.4028/www.scientific.net/amm.325-326.1454

Google Scholar

[8] Vereshchaka A.S., Vereschaka A.A., Kirillov A.K. : Key Engineering Materials Vol. 496. (2011). pp.67-74.

Google Scholar

[9] A.A. Vereshchaka, E.S. Sotova, A.D. Batako, M.I. Sedykh and A.S. Vereshchaka: Journal of Friction and Wear Vol. 35, No. 6 (2014), p.483.

DOI: 10.3103/s1068366614060166

Google Scholar

[10] A.S. Vereschaka, S.N. Grigoriev, V.P. Tabakov, E.S. Sotova, A.A. Vereschaka, M. Yu. Kulikov: Key Engineering Materials Vol. 581 (2014), p.68.

DOI: 10.4028/www.scientific.net/kem.581.68

Google Scholar

[11] A.A. Vereshchaka, A.S. Vereshchaka, O. Mgaloblishvili, M.N. Morgan, A.D. Batako: International Journal of Advanced Manufacturing Technology Vol. 72, Iss. 1 (2014), p.303.

DOI: 10.1007/s00170-014-5673-2

Google Scholar

[12] A.A. Vereschaka, B.Y. Mokritskii, D.A. Pustovalov, A.S. Vereschaka, Ju.I. Bublikov, M.G. Oganyan: Applied Mechanics and Materials Vol. 684 (2014), p.264.

DOI: 10.4028/www.scientific.net/amm.684.264

Google Scholar

[13] A.S. Veresсhaka, A.A. Veresсhaka, G. Ju. Savushkin, A.S. Sivenkov: Inorganic Materials: Applied Research Vol. 5 No. 5 (2014), p.522.

Google Scholar

[14] Alexey A. Vereschaka, Sergey N. Grigoriev, Anatoly S. Vereschaka, Alexey Yu. Popov and A.D. Batako: Procedia CIRP Vol. 14 (2014), p.239.

DOI: 10.1016/j.procir.2014.03.070

Google Scholar

[15] Anatoly S. Vereschaka, Alexey A. Vereschaka and Mars Sh. Migranov: Applied Mechanics and Materials Vol. 548-549 (2014), pp.417-421.

DOI: 10.4028/www.scientific.net/amm.548-549.417

Google Scholar

[16] A.A. Vereschaka, A.S. Vereschaka, A.I. Anikeev: Advanced Materials Research Vol. 871 (2014) p.164.

Google Scholar

[17] A.A. Vereschaka, M. Sh. Migranov: Advanced Materials Research Vol. 871 (2014), p.159.

Google Scholar

[18] A.A. Vereschaka, O. Kh. Hojaev, A.S. Vereschaka and I.S. Ruziev: Applied Mechanics and Materials Vol. 457-458 (2014) p.120.

DOI: 10.4028/www.scientific.net/amm.457-458.120

Google Scholar

[19] Vereschaka Alexey: Key Engineering Materials Vol. 581 (2014) pp.62-67.

Google Scholar

[20] B.Y. Mokritskii, A.V. Kirichek, A.M. Shpilev, D.A. Pustovalov, P.A. Sablin: Russian Engineering Research Vol. 33 (2) (2013), p.74.

DOI: 10.3103/s1068798x13020111

Google Scholar

[21] B.Y. Mokritskii: Russian Engineering Research, Vol. 30 (10) (2013), p.1026.

Google Scholar

[22] B. Ya. Mokritskii: Chemical and Petroleum Engineering, Vol. 49 (9-10) (2014), p.639.

Google Scholar

[23] B.Y. Mokritskii, D.A. Pustovalov, A. Stupin, A.A. Vereschaka, A.G. Serebrennikova, V.V. Altukhova: Applied Mechanics and Materials Vol. 703 (2015) p.131.

DOI: 10.4028/www.scientific.net/amm.703.131

Google Scholar

[24] B.Y. Mokritskii, D.A. Pustovalov, A.A. Vereschaka, A.S. Vereschaka, A.D. Verhoturov: Applied Mechanics and Materials Vol. 719-720 (2015), p.96.

DOI: 10.4028/www.scientific.net/amm.719-720.96

Google Scholar

[25] Kundrák, J., Varga, G.: Key Engineering Materials Vol. 496, (2012), pp.205-210.

Google Scholar

[26] Varga, G., Dudas, I.: Modelling and examinations of dry machining processes, Proceedings of the IASTED International Conference on Modelling, Simulation, and Optimization, (2004), pp.327-331.

Google Scholar