Carbon Nanotube-Prussian Blue Spongiform Adsorbent for Selective Capture of Cesium and Strontium

Article Preview

Abstract:

Prussian blue analogue nickel ferrocyanide (NiPB) decorated carbon nanotube sponge (CNT sponge) was prepared as a newly designed spongiform adsorbent. This composite material was characterized by scanning electron microscopy (SEM), inductively coupled plasma (ICP) and tested in adsorption experiments. Results show that the CNT-NiPB sponge was equipped with large holes and porous structure, a large number of MWNTs and NiPB particles uniformly deposited on the surface and internal cavities. This adsorbent CNT-NiPB sponge showed a good adsorption selectivity of cesium and strontium in mixed aqueous solution, which is mainly induced by the ion exchange reaction of NiPB and metal ions. The novel spongiform adsorbent might have a promise prospect in radioactive wastewater treatment applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Dutta, R. Dubey, J. Yadav, T.C. Shami, K.U. Bhasker Rao, Preparation of spongy microspheres consisting of functionalized multi-walled carbon nanotubes, New Carbon Mater. 26 (2011) 98-102.

DOI: 10.1016/s1872-5805(11)60069-3

Google Scholar

[2] A.E. Osmanlioglu, Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey, J. Hazard. Mater. 2 (2006) 332-335.

DOI: 10.1016/j.jhazmat.2006.02.013

Google Scholar

[3] C.V. Philip, S.H. Kim, M. Philip, The effect of hydrogen peroxide on a CST under cesium ion exchange conditions, Sep. Sci. Technol. 38 (2003) 3009-3029.

DOI: 10.1081/ss-120022584

Google Scholar

[4] M.M. Hitoshi, K.Y. Norihiro, A.B. Kenichi, Y.Y. Masayuki, Y.C. Miyamoto, Ion-exchange properties of potassium nickel hexacyanoferrate(II) compounds, Solvent Extr. Ion Exc. 16 (2012) 1013-1031.

DOI: 10.1080/07366299808934566

Google Scholar

[5] J.Y. Hong, W.K. Oh, K.Y. Shin, O.S. Kwon, S. Son, J.Y. Jang, Spatially controlled carbon sponge for targeting internalized radioactive materials in human body, Biomaterials 33 (2012) 5056-5066.

DOI: 10.1016/j.biomaterials.2012.03.064

Google Scholar

[6] C.L. Neskovic, S. Ayrault, V. Badillo, B. Jimennez, E. Garnier, M. Fedoroff, D.J. Jones, B. Merinov, Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium, J. Solid State Chem. 177 (2004) 1817-1828.

DOI: 10.1016/j.jssc.2004.01.018

Google Scholar

[7] P.J. Faustino, Y.S. Yang, J.J. Progar, C.R. Brownell, N. Sadrieh, J.C. May, E. Leutainger, D.A. Place, E.P. Duffy, F. Houn, S.A. Loewke, V.J. Mecozzi, C.D. Ellison, M.A. Khan, A.S. Hussain, R.C. Lyon, Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue, J. Pharm. Biomed. Anal. 47 (2008).

DOI: 10.1016/j.jpba.2007.11.049

Google Scholar

[8] I.M. Ismail, M.R. El-Sourougy, N.A. Moneim, H.F. Aly, Preparation, characterization and unilization of potassium nickel hexacyanoferrate for the separation of cesium and cobalt from contaminated waste water, J. Radioanal. Nucl. Chem. 237 (1998).

DOI: 10.1007/bf02386669

Google Scholar

[9] P. Harshala, M. Sudersanan, Engineering a lignocellulosic biosorbent-Coir pith for removal of cesium from aqueous solutions, Water Res. 44 (2010) 854-860.

DOI: 10.1016/j.watres.2009.09.038

Google Scholar

[10] B.Y. Hu, B.S. Fugetsu, H.W. Yu, Y.S. Abe, Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, J. Hazard. Mater. 217-218 (2012) 85-91.

DOI: 10.1016/j.jhazmat.2012.02.071

Google Scholar

[11] Q.M. Gong, Z. Li, X.D. Bai, D. Li, Y. Zhao, J. Liang, Thermal properties of aligned carbon nanotube/carbon nanocomposites, Mater. Sci. Eng. A 384 (2004) 209-214.

DOI: 10.1016/j.msea.2004.06.006

Google Scholar

[12] M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotubes sheet, J. Hazard. Mater. 185 (2011) 140-147.

DOI: 10.1016/j.jhazmat.2010.09.008

Google Scholar