[1]
Kahraman, A., & Singh, R. Non-linear dynamics of a spur gear pair. Journal of sound and vibration, 142(1), (1990), 49-75.
DOI: 10.1016/0022-460x(90)90582-k
Google Scholar
[2]
Kahraman, A., & Singh, R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. Journal of Sound and Vibration, 146(1), (1991), 135-156.
DOI: 10.1016/0022-460x(91)90527-q
Google Scholar
[3]
Kahraman, A. Effect of Axial Vibrations on the Dynamics of a Helical Gear Pair. Journal of Vibration and Acoustics-Transactions of the Asme, 115(1), (1993), 33-39. doi: Doi 10. 1115/1. 2930311.
DOI: 10.1115/1.2930311
Google Scholar
[4]
Parker, R. G., Agashe, V., & Vijayakar, S. M. Dynamic response of a planetary gear system using a finite element/contact mechanics model. Journal of Mechanical Design, 122(3), (2000), 304-310.
DOI: 10.1115/1.1286189
Google Scholar
[5]
Mažeika, P., Didžiokas, R., Barzdaitis, V., & Bogdevičius, M. Dynamics and reliability of gear driver with antifriction bearings, Journal of Vibroengineering, 10, (2008), 217-221.
Google Scholar
[6]
Pedersen, R., Santos, I. F., & Hede, I. A. Advantages and drawbacks of applying periodic time-variant modal analysis to spur gear dynamics. Mechanical Systems and Signal Processing, 24(5), (2010), 1495-1508.
DOI: 10.1016/j.ymssp.2009.12.009
Google Scholar
[7]
Li, S., & Kahraman, A. A tribo-dynamic model of a spur gear pair. Journal of Sound and Vibration, 332(20), (2013), 4963-4978. doi: DOI 10. 1016/j. jsv. 2013. 04. 022.
DOI: 10.1016/j.jsv.2013.04.022
Google Scholar
[8]
Li, S., & Kahraman, A. A spur gear mesh interface damping model based on elastohydrodynamic contact behaviour. International Journal of Powertrains, 1(1), (2011), 4-21.
DOI: 10.1504/ijpt.2011.041907
Google Scholar
[9]
He, S., Rook, T., & Singh, R. Construction of Semianalytical Solutions to Spur Gear Dynamics Given Periodic Mesh Stiffness and Sliding Friction Functions. Journal of Mechanical Design, 130(12), (2008).
DOI: 10.1115/1.2988478
Google Scholar
[10]
Liu, G., & Parker, R. G. Impact of tooth friction and its bending effect on gear dynamics. Journal of Sound and Vibration, 320(4-5), (2009), 1039-1063. doi: DOI 10. 1016/j. jsv. 2008. 08. 021.
DOI: 10.1016/j.jsv.2008.08.021
Google Scholar
[11]
Liang, X., Zuo, M. J., & Patel, T. H. Evaluating the time-varying mesh stiffness of a planetary gear set using the potential energy method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, (2013).
DOI: 10.1177/0954406213486734
Google Scholar
[12]
Walha, L., Fakhfakh, T., & Haddar, M. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash. Mechanism and Machine Theory, 44(5), (2009), 1058-1069.
DOI: 10.1016/j.mechmachtheory.2008.05.008
Google Scholar
[13]
SHEN, S. -l., WU, H. -r., & CAI, Y. -s. The method of calculating gear wheel flank profile falling-at the initiation point. Journal of Hefei University of Technology (Natural Science), 32, (2009), 3.
Google Scholar
[14]
Wu, J., & Wang, T. Fillet curves and root stress of gears. Beijing: National Defence Industry Press, (1989).
Google Scholar
[15]
Shi, J. L., Ma, X. G., Xu, C. L., & Zang, S. J. Meshing Stiffness Analysis of Gear Using the Ishikawa Method. Applied Mechanics and Materials, 401, (2013), 203-206.
DOI: 10.4028/www.scientific.net/amm.401-403.203
Google Scholar
[16]
Zhu, X., & E, Z. Analysis of load capacity of gears. Beijing: Higher Education Press, (1992).
Google Scholar