[1]
J. Zhao, Design and Fabrication of Functionally Gradient Ceramic Tool Materials and Their Cutting Performance, first ed., Higher Education Press, Bei Jing 2005 (In Chinese).
Google Scholar
[2]
J. Zhao, X. Ai, X.P. Huang, Relationship between the thermal shock behavior and the cutting performance of a functionally gradient ceramic tool, Journal of Materials Processing Technology. 129 (2002) 161-166.
DOI: 10.1016/s0924-0136(02)00602-7
Google Scholar
[3]
J.X. Deng, L.L. Liu, J.F. Li, M.W. Ding, X.F. Yang, Development of SiC/(W, Ti)C gradient ceramic nozzle materials for sand blasting surface treatments, International Journal of Refractory Metals and Hard Material. 25 (2007) 130-137.
DOI: 10.1016/j.ijrmhm.2006.03.006
Google Scholar
[4]
Z.H. Jin, Effect of thermal property gradients on the edge cracking in a functionally graded coating, Surface and Coatings Technology. 179 (2004) 210-214.
DOI: 10.1016/s0257-8972(03)00803-x
Google Scholar
[5]
L.J. Zhang, Q.H. Rao, Y.H. He, Y.F. Xiao, Z.Q. Huang, H. Xie, Research advance on thermal stress of functionally gradient materials, Materials Science and Engineering of Powder Metallurgy. 10 (2005) 257-263 (In Chinese).
Google Scholar
[6]
L.L. Liu, J.X. Deng, Y. Wang, L.N. Zhu, Design and development of SiC/(W, Ti)C gradient ceramic nozzle, Science in China Press. 51 (2008) 77-84.
DOI: 10.1007/s11431-008-0003-2
Google Scholar
[7]
A.J. Markworth, K.S. Ramesh, W. P. Parks, Modelling studies applied to functionally graded materials, Journal of Mater Sci. 30 (1995) 183-219.
DOI: 10.1007/bf01184560
Google Scholar
[8]
Y. Li, Z.M. Zhang, S.Y. Ma, Progess of the study on thermal stress of heat-resisting functionally gradient materials, Advance in Mechanics. 30 (2000) 571-580 (In Chinese).
Google Scholar
[9]
W.P. Shen, B.Z. Wu, J.T. Li, C.C. Ge, Design and fabrication of S-Type B4C-SiC/C functionally graded materials, Journal of University of Science and Technology Beijing. 22 (2000) 166-169 (In Chinese).
Google Scholar
[10]
Y.K. Li, Y. Wang, W.B. Han, Structure optimization of PSZ/Mo functionally gradient materials, Materials for Mechanical Engineering. 27 (2003) 14-16 (In Chinese).
Google Scholar
[11]
A.J. Markworth, K.S. Ramesh, W.P. Parks, Modelling studies applied to functionally graded materials, Journal of Materials Science. 30 (1995) 2183-2193.
DOI: 10.1007/bf01184560
Google Scholar
[12]
K. Wakashima, H. Tsukamoto, Mean-field micromechanics model and its application to the analysis of thermomechanical behavior of composite materials, Materials Science and Engineering: A. 146 (1991) 291-316.
DOI: 10.1016/0921-5093(91)90284-t
Google Scholar
[13]
Z. Fan, P. Tsakiropoulous, On the mean internal stresses in two-ductile-phase alloys, Materials Science and Engineering: A. 184 (1994) 57-64.
DOI: 10.1016/0921-5093(94)91074-x
Google Scholar
[14]
X.H. Zhang, W. Qu, X.Z. Zhang, Y.H. Li, J.C. Han, Optimum design of TiC-Ni functionally graded materials, Material Science and Technology. 8 (2000) 81-83 (In Chinese).
Google Scholar
[15]
J.L. He, Q. Sun, Optimum design of fabrication for aeronautical graded materials, Materials Review. 23 (2009) 14-16 (In Chinese).
Google Scholar
[16]
G.B. Zhang, Q.G. Guo, K.J. Wang, H. Zhang, Y. Song, J.L. Shi, L. Liu, Finite element design of SiC/C functionally graded materials for ablation resistance application, Materials Science and Engineering: A. 488 (2008) 45-49.
DOI: 10.1016/j.msea.2007.10.078
Google Scholar
[17]
F.Y. Chen, W,Q. Jie, Finite element design of MgO/Ni system functionally graded materials, Journal of Materials Processing Technology. 182 (2007) 181-184.
DOI: 10.1016/j.jmatprotec.2006.07.028
Google Scholar
[18]
H.W. Wang, M. Sun Y.Q. Wei, Design of Ti6Al4V-TiN Gradient Materials, Development and Application of Materials. 15 (2000) 1-4(In Chinese).
Google Scholar
[19]
Y.K. Li, H. Lin, W.B. Han, Finite element analysis calculation of PSM/Mo functionally graded materials, Rare Metal Materials and Engineering. 36 (2007) 837-840 (In Chinese).
Google Scholar
[20]
J Li, Q. S Zhang, Y. Q Lai, S.L. Ye, Y.X. Liu, Thermal stresses relaxation design of Ni/NiFe2O4 system functionally graded cermet inert anode, Acta Metallurgica Sinica(English letters). 18 (2005) 635-641.
DOI: 10.1016/s1006-7191(07)60018-0
Google Scholar
[21]
Q. B. Fan, Z. Ma, F.C. Wang , L. Wang, Integration design of heat insulation and stress relaxation for FGM thermal barrier coating, Rare Metal Materials and Engineering. 36 (2007) 544-547 (In Chinese).
Google Scholar
[22]
J.G. Xu, W.F. Li, C.Q. Huang, Permittivity-gards wave-absorbing carbon nanotubes/epoxy resin composites optimization by genetic algorithm, Journal of Functional Materials. 41 (2010) 155-158 (In Chinese).
Google Scholar
[23]
G.B. Zhang, Q. G Guo, X.T. Li, H. Zhang, Y. Song, J.L. Shi, L. Liu, Effect of the number of graded layers on the microstructure and properties of SiC/C functionally graded materials, Fusion Engineering and Design. 82 (2007) 331-337.
DOI: 10.1016/j.fusengdes.2007.02.015
Google Scholar
[24]
X.J. Zhang, Y.G. Wei, S.Z. Zhang, Optimimal design for Edge Effect, problem of FGM components, Functional Materials. 17 (2010) 67-71 (In Chinese).
Google Scholar
[25]
J.P. Zou, J.M. Ruan, Z.C. Zhou, X.J. Shen, Z.H. Zhou, Design, preparation and property evaluation of functionally graded materials, Materials Science and Engineering of Powder Metallurgy. 10 (2005) 78-87 (In Chinese).
Google Scholar
[26]
T. Kawaguchi, M. Sakamoto, T. Tanaka, Y. Tsuji, Quasi-three-dimensional numerical simulation of spouted beds in cylinder, Powder Technology. 109 (2000) 3-12.
DOI: 10.1016/s0032-5910(99)00222-3
Google Scholar
[27]
J.I. Kim, W.J. Kim, D.J. Choi, J.Y. Park, W.S. Ryu, Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites, Carbon. 43 (2005) 1749-1757.
DOI: 10.1016/j.carbon.2005.02.025
Google Scholar
[28]
J.R. Cho, Optimum material composition design for thermal stress reduction in FGM lathe bit, Composites Part A: Applied Science and Manufacturing. 37 (2006) 1568-1577.
DOI: 10.1016/j.compositesa.2005.11.001
Google Scholar