[1]
A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, New York, (1979).
Google Scholar
[2]
J. Awrejcewicz, V.A. Krysko, Introduction to Asymptotic Methods, Chapman and Hall/CRC Press, (2006).
Google Scholar
[3]
S. Ghosh, D. Roy, An adaptation of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators, Comp. Meth. Appl. Mech. Eng. 196 (2007) 1133-1153.
DOI: 10.1016/j.cma.2006.08.010
Google Scholar
[4]
Y.M. Chen, J.K. Liu, Uniformly valid solution of limit cycle of the Duffing-van der Pol equation, Mech. Res. Commun. 36 (2009) 845-850.
DOI: 10.1016/j.mechrescom.2009.06.001
Google Scholar
[5]
S. Momani, G.H. Erjaee, M.H. Alnasr, The modified homotopy perturbation method for solving strongly nonlinear oscillators, Comp. Math. Appl. 58 (2009) 2209-2220.
DOI: 10.1016/j.camwa.2009.03.082
Google Scholar
[6]
V. Marinca, N. Herisanu, Periodic solutions of Duffing equation with strong non-linearity, Chaos, Soliton, Fractals 37 (2008) 144-149.
DOI: 10.1016/j.chaos.2006.08.033
Google Scholar
[7]
N. Herişanu, V. Marinca, Optimal homotopy perturbation method for a non-conservative dynamical system of a rotating electrical machine, Zeitschrift fur Naturforsch. A 67 (2012) 509-516.
DOI: 10.5560/zna.2012-0047
Google Scholar
[8]
L. Cveticanin, On the van der Pol oscillator: an overview, Appl. Mech. Mat. 430 (2013) 3-13.
Google Scholar
[9]
I. Kovacic, R.E. Mickens, A generalized van der Pol type oscillator: Investigation of the properties of its limit cycle, Math. Comput. Model. 55 (2012) 645-653.
DOI: 10.1016/j.mcm.2011.08.038
Google Scholar
[10]
K. Oyedeji, An analysis of a nonlinear elastic force van der Pol oscillator equation, J. Sound. Vibr. 281 (2005) 417-422.
DOI: 10.1016/j.jsv.2004.03.040
Google Scholar
[11]
N. Herisanu, V. Marinca, An iteration procedure with application to van der Pol oscillator, Int. J. Nonlinear Sci. Num. Simul. 10 (2009) 353-361.
Google Scholar
[12]
J. Warminski, Regular and chaotic vibrations of van der Pol and Rayleigh oscillators driven by parametric excitation, Procedia IUTAM. 5 (2012) 78-87.
DOI: 10.1016/j.piutam.2012.06.011
Google Scholar
[13]
S. Natsiavas, Dynamics of piecewise linear oscillators with van der Pol type damping, Int. J. Non-Linear Mech. 26 (1991) 349-366.
DOI: 10.1016/0020-7462(91)90065-2
Google Scholar
[14]
C.W. Lim, S.K. Lai, Accurate higher-order analytical approximate solutions to nonconservative nonlinear oscillators and application to van der Pol damped oscillators, Int. J. Mech. Sci. 48 (2006) 483-492.
DOI: 10.1016/j.ijmecsci.2005.12.009
Google Scholar
[15]
V. Marinca, N. Herisanu, An optimal asymptotic approach to nonlinear MHD Jeffery-Hamel flow, Math. Probl. Eng., Art. No. 169056, (2011).
Google Scholar
[16]
V. Marinca, N. Herisanu, The optimal homotopy asymptotic method. Engineering applications, Springer, (2015).
DOI: 10.1007/978-3-319-15374-2_2
Google Scholar