Analytical Study of the Oblique Impact of a Rod with a Flat Using an Elasto-Plastic Contact Model

Article Preview

Abstract:

In the current study a flattening contact model, combined with a permanent deformation expression, has been analyzed for the oblique impact case. The model has been simulated for different initial conditions using MATLAB. The initial impact velocity used for the simulations ranges from 0.5 to 3 m/s. The results are compared theoretically for four different impact angles including 20, 45, 70, and 90 degrees. The contact force, the linear and the angular motion, the permanent deformation, and the coefficient of restitution have been analyzed. It is assumed that sliding occurs throughout the impact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hertz, Über die Berührung fester elastischer Körper, Journal fur die Reine und Andegwandte Mathematik, 1882, 92, 156-171.

DOI: 10.1515/9783112342404-004

Google Scholar

[2] K.L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1985, 154-179.

Google Scholar

[3] K. Komvopoulos, Finite element analysis of a layered elastic solid in normal contact with a rigid surface, Journal of Tribology, 1988, 110(3), 477-485.

DOI: 10.1115/1.3261653

Google Scholar

[4] K. Komvopoulos, Elastic-plastic finite element analysis of indented layered media, Journal of Tribology, 1989, 111(3), 430-439.

DOI: 10.1115/1.3261943

Google Scholar

[5] N. Ye K. and Komvopoulos, Indentation analysis of elastic-plastic homogeneous and layered media: Criteria for determining the real material hardness, Journal of Tribology, 2003, 125(4), 685-691.

DOI: 10.1115/1.1572515

Google Scholar

[6] L. Kogut and K. Komvopoulos, Analysis of the spherical indentation cycle for elastic-perfectly plastic solids, Journal of materials research, 2004, 19(12), 3641-3653.

DOI: 10.1557/jmr.2004.0468

Google Scholar

[7] K.L. Johnson, An experimental determination of the contact stresses between plastically deformed cylinders and spheres, Engineering Plasticity, Cambridge University Press. Cambridge, 1968, 341-361.

Google Scholar

[8] L.Y. Li, C.Y. Wu and C. Thornton, A theoretical model for the contact of elasto-plastic bodies, Journal of Mechanical Engineering Science, 2002, 216(4), 421-431.

Google Scholar

[9] C. Thornton and Z. Ning, Oblique impact of elasto-plastic spheres, Proceedings of the First International Particle Technology Forum, AIChE Publications, 1994, 2, 14-19.

Google Scholar

[10] C. Thornton, Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres, ASME Journal of Applied Mechanics, 1997, 65, 383-386.

DOI: 10.1115/1.2787319

Google Scholar

[11] C.Y. Wu, L.Y. Li and C. Thornton, Energy dissipation during normal impact of elastic and elastic-plastic spheres, International Journal of Impact Engineering, 2005, 32(1), 593-604.

DOI: 10.1016/j.ijimpeng.2005.08.007

Google Scholar

[12] L. Kogut and I. Etsion, Elastic-plastic contact analysis of a sphere and a rigid flat, ASME Journal of applied Mechanics, 2002, 69(5), 657-662.

DOI: 10.1115/1.1490373

Google Scholar

[13] I. Etsion, Y. Kligerman and Y. Kadin, Unloading of an elastic-plastic loaded spherical contact, International Journal of Solids and Structures, 2005, 42(13), 3716-3729.

DOI: 10.1016/j.ijsolstr.2004.12.006

Google Scholar

[14] R.L. Jackson, I. Green, A Finite Element Study of Elasto-Plastic Hemispherical Contact, ASME Journal of Tribology, 2005, 127(2), 343-354.

DOI: 10.1115/1.1866166

Google Scholar

[15] M.R. Brake, An analytical elastic-perfectly plastic contact model, International Journal of Solids and Structures, 2012, 49(22), 3129-3141.

DOI: 10.1016/j.ijsolstr.2012.06.013

Google Scholar

[16] W.J. Stronge, Rigid body collisions with friction, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1990, 431(1881), 169-181.

DOI: 10.1098/rspa.1990.0125

Google Scholar

[17] W.J. Stronge, Unraveling paradoxical theories for rigid body collisions, ASME Journal of Applied Mechanics, 1991, 58(4), 1049-1055.

DOI: 10.1115/1.2897681

Google Scholar

[18] W.J. Stronge, Energy dissipated in planar collision, ASME Journal of applied mechanics, 1992, 61, 605-611.

Google Scholar

[19] A.H. Kharaz, D.A. Gorham, and A.D. Salman, Accurate measurement of particle impact parameters, Measurement Science and Technology, 1999, 10(1), 31.

DOI: 10.1088/0957-0233/10/1/009

Google Scholar

[20] R.L. Jackson, I. Green, and D.B. Marghitu, Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres, Journal of Nonlinear Dynamics, 2010, 60(3), 217-229.

DOI: 10.1007/s11071-009-9591-z

Google Scholar

[21] D.B. Marghitu, D. Cojocaru and R.L. Jackson, Elasto-plastic Impact of a Rotating Link with a Massive Surface, International Journal of Mechanical Sciences, 2011, 53 (4), 309-315.

DOI: 10.1016/j.ijmecsci.2011.01.012

Google Scholar

[22] H. Ghaednia, D.B. Marghitu and R.L. Jackson, Predicting the permanent deformation after the impact of a rod with a flat surface, Journal of Tribology, 2015, 137 (1), 011403.

DOI: 10.1115/1.4028709

Google Scholar