[1]
B.M. Tyson, R.K. Abu Al-Rub, A. Yazdanbakhsh, Z. Grasley, Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials, J. Mater. Civil. Eng., 23 (2011) 1028-1035.
DOI: 10.1061/(asce)mt.1943-5533.0000266
Google Scholar
[2]
A. Ashour, Aspect Ratio Effect of Functionalized/Non-Functionalized Multiwalled Carbon Nanotubes on the Mechanical Properties of Cementitious Materials, Master's thesis, Texas A&M University. Available electronically from http: /hdl. handle. net/1969, 1 (2011).
Google Scholar
[3]
G. Noiseux-Lauze, G. Akhras, Structural Health Monitoring using Smart Nano Cement Sensors, (2013).
Google Scholar
[4]
B. Sindu, S. Sasmal, S. Gopinath, A multi-scale approach for evaluating the mechanical characteristics of carbon nanotube incorporated cementitious composites, Constr. Build. Mater., 50 (2014) 317-327.
DOI: 10.1016/j.conbuildmat.2013.09.053
Google Scholar
[5]
A. Montazeri, M. Chitsazzadeh, Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Design., 56 (2014) 500-508.
DOI: 10.1016/j.matdes.2013.11.013
Google Scholar
[6]
P. Stynoski, P. Mondal, E. Wotring, C. Marsh, Characterization of silica-functionalized carbon nanotubes dispersed in water, J. Nanopart. Res., 15 (2013) 1-10.
DOI: 10.1007/s11051-012-1396-1
Google Scholar
[7]
M. Khavarian, S. -P. Chai, S. Huat Tan, A.R. Mohamed, Effects of Temperature on the Synthesis of Carbon Nanotubes by FeCl3 as a Floating Catalyst Precursor, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011) 575-583.
DOI: 10.1080/1536383x.2010.504954
Google Scholar
[8]
J. Makar, J. Beaudoin, Nanotechnology in construction, R. Soc. Chem. Cambridge. UK, 331 (2004).
Google Scholar
[9]
X. -L. Xie, Y. -W. Mai, X. -P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mat. Sci. Eng. A-Struct., 49 (2005) 89-112.
Google Scholar
[10]
Y. Sáez de Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, physica status solidi (a), 203 (2006) 1076-1081.
DOI: 10.1002/pssa.200566166
Google Scholar
[11]
W.J. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H.J. Sue, H. Pham, N. Verghese, Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites, J. Polym. Sci. Pol. Phys., 45 (2007) 1459-1469.
DOI: 10.1002/polb.21163
Google Scholar
[12]
M. Hussain, Y. Oku, A. Nakahira, K. Niihara, Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites, Mater. Lett., 26 (1996) 177-184.
DOI: 10.1016/0167-577x(95)00223-5
Google Scholar
[13]
L.M. Hamming, R. Qiao, P.B. Messersmith, L.C. Brinson, Effects of dispersion and interfacial modification on the macroscale properties of TiO 2 polymer–matrix nanocomposites, Compos. Sci. Technol., 69 (2009) 1880-1886.
DOI: 10.1016/j.compscitech.2009.04.005
Google Scholar
[14]
V.B. Prasad, B. Bhat, Y. Mahajan, P. Ramakrishnan, Structure–property correlation in discontinuously reinforced aluminium matrix composites as a function of relative particle size ratio, Mat. Sci. Eng. A-Struct., 337 (2002) 179-186.
DOI: 10.1016/s0921-5093(02)00024-2
Google Scholar
[15]
A. Slipenyuk, V. Kuprin, Y. Milman, J. Spowart, D. Miracle, The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC, Mat. Sci. Eng. A-Struct., 381 (2004).
DOI: 10.1016/j.msea.2004.04.040
Google Scholar
[16]
J. Suave, L.A.F. Coelho, S.C. Amico, S.H. Pezzin, Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT, Mat. Sci. Eng. A-Struct., 509 (2009) 57-62.
DOI: 10.1016/j.msea.2009.01.036
Google Scholar
[17]
S. Kumar, P. Kolay, S. Malla, S. Mishra, Effect of multiwalled carbon nanotubes on mechanical strength of cement paste, J. Mater. Civil. Eng., 24 (2011) 84-91.
DOI: 10.1061/(asce)mt.1943-5533.0000350
Google Scholar
[18]
A. Cwirzen, K. Habermehl-Cwirzen, A. Nasibulin, E. Kaupinen, P. Mudimela, V. Penttala, SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles, Mater. Charact., 60 (2009) 735-740.
DOI: 10.1016/j.matchar.2008.11.001
Google Scholar
[19]
J. Makar, J. Beaudoin, Carbon nanotubes and their application in the construction industry, SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY, 292 (2004) 331-342.
Google Scholar
[20]
G.Y. Li, P.M. Wang, X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement. Concrete. Comp., 29 (2007) 377-382.
DOI: 10.1016/j.cemconcomp.2006.12.011
Google Scholar
[21]
A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Adv. Cem. Res., 20 (2008) 65-73.
DOI: 10.1680/adcr.2008.20.2.65
Google Scholar
[22]
A. Hunashyal, S.V. Tippa, S. Quadri, N. Banapurmath, Experimental investigation on effect of carbon nanotubes and carbon fibres on the behavior of plain cement mortar composite round bars under direct tension, ISRN Nanotechnology, 2011 (2011).
DOI: 10.5402/2011/856849
Google Scholar
[23]
S. Musso, J. -M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Compos. Sci. Technol., 69 (2009) 1985-(1990).
DOI: 10.1016/j.compscitech.2009.05.002
Google Scholar
[24]
R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Stabilization of Individual Carbon Nanotubes in Aqueous Solutions, Nano. Lett., 2 (2001) 25-28.
DOI: 10.1021/nl010065f
Google Scholar
[25]
T. Kowald, R. Trettin, Influence of surface-modified carbon nanotubes on ultrahigh performance concrete, Proceedings of International Symposium on Ultra High Performance Concrete, 2004, pp.195-203.
Google Scholar
[26]
J. Makar, J. Margeson, J. Luh, Carbon nanotube/cement composites-early results and potential applications, (2005).
Google Scholar
[27]
H.K. Kim, I.W. Nam, H.K. Lee, Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume, Compos. Struct., 107 (2014) 60-69.
DOI: 10.1016/j.compstruct.2013.07.042
Google Scholar