Dispersion of Multi-Walled Carbon Nanotubes in Portland Cement Concrete Using Ultra-Sonication and Polycarboxylic Based Superplasticizer

Article Preview

Abstract:

The potential properties of carbon nanotube-cement based materials strongly depend on the dispersion of carbon nanotubes (CNTs) within the cement matrix and the bonding between CNTs and the hydrated cement. The homogeneous dispersion of CNTs in the cement matrix yet is one of the main challenges due to strong van der Waals forces between nanotubes. In this study, a polycarboxylic ether based superplasticizer and ultra-sonication technique was used for dispersion of multi-walled carbon nanotubes (MWCNTs). Portland cement concrete specimens with different concentrations of MWCNTs (0.04 and 0.1 % by the weight of cement), with and without the presence of superplasticizer were investigated. Compressive strength test results revealed a significant improvement in mechanical properties of sample containing 0.1 % MWCNTs and 0.2 % superplasticizer. Moreover, field emission scanning electron microscopy (FESEM) images of fractured surfaces of hardened specimens showed a good dispersion of MWCNTs within the cement matrix. This method was developed to facilitate the uniform dispersion of MWCNTs in the cementitious concrete for better reinforcement in nanoscale and mechanical properties enhancement by transfer of load between the nanotubes and matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-117

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.M. Tyson, R.K. Abu Al-Rub, A. Yazdanbakhsh, Z. Grasley, Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials, J. Mater. Civil. Eng., 23 (2011) 1028-1035.

DOI: 10.1061/(asce)mt.1943-5533.0000266

Google Scholar

[2] A. Ashour, Aspect Ratio Effect of Functionalized/Non-Functionalized Multiwalled Carbon Nanotubes on the Mechanical Properties of Cementitious Materials, Master's thesis, Texas A&M University. Available electronically from http: /hdl. handle. net/1969, 1 (2011).

Google Scholar

[3] G. Noiseux-Lauze, G. Akhras, Structural Health Monitoring using Smart Nano Cement Sensors, (2013).

Google Scholar

[4] B. Sindu, S. Sasmal, S. Gopinath, A multi-scale approach for evaluating the mechanical characteristics of carbon nanotube incorporated cementitious composites, Constr. Build. Mater., 50 (2014) 317-327.

DOI: 10.1016/j.conbuildmat.2013.09.053

Google Scholar

[5] A. Montazeri, M. Chitsazzadeh, Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Design., 56 (2014) 500-508.

DOI: 10.1016/j.matdes.2013.11.013

Google Scholar

[6] P. Stynoski, P. Mondal, E. Wotring, C. Marsh, Characterization of silica-functionalized carbon nanotubes dispersed in water, J. Nanopart. Res., 15 (2013) 1-10.

DOI: 10.1007/s11051-012-1396-1

Google Scholar

[7] M. Khavarian, S. -P. Chai, S. Huat Tan, A.R. Mohamed, Effects of Temperature on the Synthesis of Carbon Nanotubes by FeCl3 as a Floating Catalyst Precursor, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011) 575-583.

DOI: 10.1080/1536383x.2010.504954

Google Scholar

[8] J. Makar, J. Beaudoin, Nanotechnology in construction, R. Soc. Chem. Cambridge. UK, 331 (2004).

Google Scholar

[9] X. -L. Xie, Y. -W. Mai, X. -P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mat. Sci. Eng. A-Struct., 49 (2005) 89-112.

Google Scholar

[10] Y. Sáez de Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, physica status solidi (a), 203 (2006) 1076-1081.

DOI: 10.1002/pssa.200566166

Google Scholar

[11] W.J. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H.J. Sue, H. Pham, N. Verghese, Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites, J. Polym. Sci. Pol. Phys., 45 (2007) 1459-1469.

DOI: 10.1002/polb.21163

Google Scholar

[12] M. Hussain, Y. Oku, A. Nakahira, K. Niihara, Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites, Mater. Lett., 26 (1996) 177-184.

DOI: 10.1016/0167-577x(95)00223-5

Google Scholar

[13] L.M. Hamming, R. Qiao, P.B. Messersmith, L.C. Brinson, Effects of dispersion and interfacial modification on the macroscale properties of TiO 2 polymer–matrix nanocomposites, Compos. Sci. Technol., 69 (2009) 1880-1886.

DOI: 10.1016/j.compscitech.2009.04.005

Google Scholar

[14] V.B. Prasad, B. Bhat, Y. Mahajan, P. Ramakrishnan, Structure–property correlation in discontinuously reinforced aluminium matrix composites as a function of relative particle size ratio, Mat. Sci. Eng. A-Struct., 337 (2002) 179-186.

DOI: 10.1016/s0921-5093(02)00024-2

Google Scholar

[15] A. Slipenyuk, V. Kuprin, Y. Milman, J. Spowart, D. Miracle, The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC, Mat. Sci. Eng. A-Struct., 381 (2004).

DOI: 10.1016/j.msea.2004.04.040

Google Scholar

[16] J. Suave, L.A.F. Coelho, S.C. Amico, S.H. Pezzin, Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT, Mat. Sci. Eng. A-Struct., 509 (2009) 57-62.

DOI: 10.1016/j.msea.2009.01.036

Google Scholar

[17] S. Kumar, P. Kolay, S. Malla, S. Mishra, Effect of multiwalled carbon nanotubes on mechanical strength of cement paste, J. Mater. Civil. Eng., 24 (2011) 84-91.

DOI: 10.1061/(asce)mt.1943-5533.0000350

Google Scholar

[18] A. Cwirzen, K. Habermehl-Cwirzen, A. Nasibulin, E. Kaupinen, P. Mudimela, V. Penttala, SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles, Mater. Charact., 60 (2009) 735-740.

DOI: 10.1016/j.matchar.2008.11.001

Google Scholar

[19] J. Makar, J. Beaudoin, Carbon nanotubes and their application in the construction industry, SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY, 292 (2004) 331-342.

Google Scholar

[20] G.Y. Li, P.M. Wang, X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement. Concrete. Comp., 29 (2007) 377-382.

DOI: 10.1016/j.cemconcomp.2006.12.011

Google Scholar

[21] A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Adv. Cem. Res., 20 (2008) 65-73.

DOI: 10.1680/adcr.2008.20.2.65

Google Scholar

[22] A. Hunashyal, S.V. Tippa, S. Quadri, N. Banapurmath, Experimental investigation on effect of carbon nanotubes and carbon fibres on the behavior of plain cement mortar composite round bars under direct tension, ISRN Nanotechnology, 2011 (2011).

DOI: 10.5402/2011/856849

Google Scholar

[23] S. Musso, J. -M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Compos. Sci. Technol., 69 (2009) 1985-(1990).

DOI: 10.1016/j.compscitech.2009.05.002

Google Scholar

[24] R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Stabilization of Individual Carbon Nanotubes in Aqueous Solutions, Nano. Lett., 2 (2001) 25-28.

DOI: 10.1021/nl010065f

Google Scholar

[25] T. Kowald, R. Trettin, Influence of surface-modified carbon nanotubes on ultrahigh performance concrete, Proceedings of International Symposium on Ultra High Performance Concrete, 2004, pp.195-203.

Google Scholar

[26] J. Makar, J. Margeson, J. Luh, Carbon nanotube/cement composites-early results and potential applications, (2005).

Google Scholar

[27] H.K. Kim, I.W. Nam, H.K. Lee, Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume, Compos. Struct., 107 (2014) 60-69.

DOI: 10.1016/j.compstruct.2013.07.042

Google Scholar