Review on Applications of Nanoparticles in Landfill Leachate Treatment

Article Preview

Abstract:

Sanitary landfill is the most common way to eliminate solid waste. However, sanitary landfill generates large quantity of leachate. Leachate can be defined as a liquid that passes through a landfill and extracted dissolved and suspended matter. The presence of large quantity of contaminants in leachate is harmful to human and ecological environment. This can lead to health issues, including gastrointestinal illness, reproductive problems, and neurological disorders. There are several significant techniques have been made to overcome the problem of leachate pollution, including photocatalytic oxidation, adsorption/separation processing and bioremediation. However, the applications have been restricted by many factors, such as processing efficiency, operational method, energy requirements, and economic benefit. This present article provides an overview of research studies and advances concerned with the development of nanoparticles and their potential applications in leachate treatment. Nanoparticles can act as antimicrobial and function as reducing agent and catalyst in detoxification of pollutants in the environment, such as organic, inorganic and heavy metals. NPs have been suggested as efficient, cost-effective and environmental friendly alternative to existing treatment materials and presents a number of potential environmental benefits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

525-530

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.Y. Foo, B.H. Hameed, Journal of Hazardous Materials 171 (2009) 54-60.

Google Scholar

[2] Y.A.J. Al-Hamadani, M.S. Yusoff, M. Umar, M.J.K. Bashir, M.N. Adlan, Journal of Hazardous Materials 190 (2011) 582-587.

DOI: 10.1016/j.jhazmat.2011.03.087

Google Scholar

[3] A.O. El-Sadik, A. El-Ansary, S.M. Sabry, Clinical pharmacology : advances and applications 2 (2010) 9-16.

Google Scholar

[4] M. Ghaedi, A. Ansari, R. Sahraei, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 114 (2013) 687-694.

DOI: 10.1016/j.saa.2013.04.091

Google Scholar

[5] Q. -Q. Zhang, B. -H. Tian, X. Zhang, A. Ghulam, C. -R. Fang, R. He, Waste Management 33 (2013) 2277-2286.

Google Scholar

[6] X. Qu, P.J.J. Alvarez, Q. Li, Water Research 47 (2013) 3931-3946.

Google Scholar

[7] Z. Kashitarash, S. Taghi, N. Kazem, A. Abbass, R. Alireza, Iranian Journal of Environmental Health Science & Engineering 9 (2012) 1-5.

DOI: 10.1186/1735-2746-9-36

Google Scholar

[8] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Journal of Hazardous Materials 211–212 (2012) 317-331.

Google Scholar

[9] S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Journal of Hazardous Materials 150 (2008) 468-493.

DOI: 10.1016/j.jhazmat.2007.09.077

Google Scholar

[10] Y. Peng, Arabian Journal of Chemistry (2013).

Google Scholar

[11] J. Behari, Indial Journal of Experimental Biology 48 (2010) 1008-1019.

Google Scholar

[12] S. Nethaji, A. Sivasamy, A.B. Mandal, Bioresource Technology 134 (2013) 94-100.

Google Scholar

[13] Q. Zhou, X. Wang, J. Liu, L. Zhang, Chemical Engineering Journal 200–202 (2012) 619-626.

Google Scholar

[14] A.Ö.A. Tuna, E. Özdemir, E.B. Şimşek, U. Beker, Chemical Engineering Journal 223 (2013) 116-128.

Google Scholar

[15] P. Lodeiro, S.M. Kwan, J.T. Perez, L.F. González, C. Gérente, Y. Andrès, G. McKay, Chemical Engineering Journal 215–216 (2013) 105-112.

DOI: 10.1016/j.cej.2012.11.052

Google Scholar

[16] J. Xiao, Q. Yue, B. Gao, Y. Sun, J. Kong, Y. Gao, Q. Li, Y. Wang, Chemical Engineering Journal 253 (2014) 63-72.

Google Scholar

[17] Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H. Weng, Environ Technol 30 (2009) 583-609.

Google Scholar

[18] F. Taghizadeh, M. Ghaedi, K. Kamali, E. Sharifpour, R. Sahraie, M.K. Purkait, Powder Technology 245 (2013) 217-226.

DOI: 10.1016/j.powtec.2013.04.020

Google Scholar

[19] K. Ahmadi, M. Ghaedi, A. Ansari, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136, Part C (2015) 1441-1449.

DOI: 10.1016/j.saa.2014.10.034

Google Scholar

[20] A. Babuponnusami, K. Muthukumar, Journal of Environmental Chemical Engineering 2 (2014) 557-572.

Google Scholar

[21] A.D. Bokare, W. Choi, Journal of Hazardous Materials 275 (2014) 121-135.

Google Scholar

[22] A.J. Huh, Y.J. Kwon, J Control Release 156 (2011) 128-145.

Google Scholar

[23] H. Palza, International Journal of Molecular Sciences 16 (2015) 2099-2116.

Google Scholar

[24] A.M. Studer, L.K. Limbach, L. Van Duc, F. Krumeich, E.K. Athanassiou, L.C. Gerber, H. Moch, W.J. Stark, Toxicology Letters 197 (2010) 169-174.

DOI: 10.1016/j.toxlet.2010.05.012

Google Scholar

[25] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, Journal of Biomedical Materials Research 52 (2000) 662-668.

Google Scholar