Energy Demand Simulation of Machine Tools with Improved Chatter Stability Achieved by Active Damping

Article Preview

Abstract:

The electric base load of milling machine tools has a high share of the machine’s total energy consumption. An approach to decrease the energy demand per workpiece is to shorten the machining time by raising the material removal rate. The maximum feed depends on the tool’s wear resistance while the maximum depth of cut is often limited by the chatter stability of the machine. In this paper active damping is used to damp chatter vibrations, which leads to a higher depth of cut. To evaluate the decrease of energy consumption for any workpiece, a modeling methodology for the energy demand of machine tools was developed, which is presented in this paper. The methodology is able to estimate the energy requirements of the spindle during cutting, of the feed drives, of the auxiliary equipment and of the base load. The numerical results were experimentally validated by different 2.5D machining processes, with good agreement between the simulation model and the experimental results. Therefore, the proposed methodology can be used effectively for calculating the total energy required for the machining of any workpiece. In addition, the structural dynamics of the machine tool, the active damping system and the cutting process were modeled in order to simulate the chatter stability. This enables a straightforward determination of the optimum cutting parameters as well as a comparison of different milling part programs, both in terms of the energy demand. Furthermore, it is possible to evaluate the energy conservation by active damping and to point out for which cutting processes active damping is useful.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-195

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Altintas, Manufacturing Automation, 2nd ed., Cambridge University Press, New York, (2012).

Google Scholar

[2] J. Munoa, I. Mancisidor, N. Loix, L. G. Uriarte, R. Barcena, M. Zatarain, Chatter Suppression in Ram Type Travelling Column Milling Machines using a Biaxial Inertial Actuator, CIRP Annals - Manufacturing Technology 62 Vol. 1 (2013), pp.407-410.

DOI: 10.1016/j.cirp.2013.03.143

Google Scholar

[3] R. Kleinwort, Y. Altintas, M. F. Zaeh, Active Damping of Heavy Duty Milling Operations, in: M. Akkok, A. Erden, S. E. Kilic, E. I. Konukseven, E. Budak und I. Lazoglu (Eds. ), Proceedings of the 16th International Conference on Machine Design and Production, Izmir, 2014, pp.443-458.

Google Scholar

[4] M. Baur, Aktives Dämpfungssystem zur Ratterunterdrückung an spanenden Werkzeug-maschinen, Diss. TU München, Utz Verlag, Munich, (2014).

Google Scholar

[5] A. Boldering, A. Raatz, A Design of an Active Tool Holding Device, in: Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Stone Mountain (Georgia), 2012, pp.313-320.

Google Scholar

[6] J. Emmrich, W. Bickel, B. Denkena, B. Ponick, Design of an Integrated Electromagnetic Actuator for High Frequency Damping Forces, in: Proceedings of the 20th International Conference on Electrical Machines, Marseille, 2012, p.1957-(1963).

DOI: 10.1109/icelmach.2012.6350149

Google Scholar

[7] U. Goetze, H. J. Koriath, A. Kolesnikov, R. Lindner, J. Paetzold, C. Scheffler, Energetische Bilanzierung und Bewertung von Werkzeugmaschinen, in: Neugebauer, R. (Ed. ), Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik, 1. Internationales Kolloquium des Spitzentechnologieclusters eniPROD, Verlag Wissenschaftliche Scripten, Auerbach/Vogtland, 2010, pp.157-184.

Google Scholar

[8] A. Dietmair, A. Verl, M. Wosnik, Zustandsbasierte Energieverbrauchsprofile, Werkstattstechnik online 98 Vol. 7/8 (2008), pp.640-645.

DOI: 10.37544/1436-4980-2008-7-8-640

Google Scholar

[9] A. Verl, P. Eberspächer, J. Schlechtendahl, Steuerungstechnik senkt Energieverbrauch von Maschinen, Maschinen-Markt MM 207 Vol. 50 (2011).

Google Scholar

[10] O. I. Avram, P. Xirouchakis, Evaluating the use phase energy requirements of a machine tool system, in: Journal of Cleaner Production 19 Vol. 6/7 (2011), pp.699-711.

DOI: 10.1016/j.jclepro.2010.10.010

Google Scholar

[11] W. K. Gawronski, Advanced Structural Dynamics and Active Control of Structures, Springer, New York, (2004).

Google Scholar

[12] S. Kreitlein, A. Höft, S. Schwender, J. Franke, Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production, in: Procedia CIRP Vol. 32 (2015), pp.58-63.

DOI: 10.1016/j.procir.2015.02.219

Google Scholar

[13] S. Freiberger , J. Böhner, S. Kreitlein, R. Steinhilper, J. Franke, Green Factory Bavaria: Methodenentwicklung und Wissenstransfer zur Energieeffizienzsteigerung, www. elektrotechnik. de - Automation Valley (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar

[14] F. Karl, P. Schnellbach, G. Reinhart, J. Böhner, S. Freiberger, R. Steinhilper, S. Kreitlein, J. Franke, T. Maier, J. Pohl, M. F. Zäh, Green Factory Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz, Werkstattstechnik online 102 Vol. 9 (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar