Influence of Surface Structured Filler Wires on Laser Beam Welding of Copper Alloys

Article Preview

Abstract:

Compared to steel, the required amount of energy for conventional welding of copper is higher, due to its higher thermal conductivity. This problem is mainly solved by preheating the work pieces or welding processes with high intensities such as laser beam welding. As the absorption of copper for infrared wavelengths, which are commonly used in industrial applications today, is typically low, the energy efficiency of the laser welding process is low. Besides this, if filler wires are used in order to increase the bridgeable width of joining gaps, the energy consumption of the process is further increased due to the additional amount of energy required to melt the filler material.As roughened surfaces of copper parts are known to increase absorption and consequently energy efficiency of laser beam welding without filler wires, this paper investigates the influence of surface structured filler wires on laser beam welding of copper alloys. Thus, the correlation between knurling geometries, absorption, molten volume and the welding result is investigated. For this reason, the welding result is evaluated by means of geometrical, electrical and mechanical weld seam properties e.g. seam width, weld reinforcement, area of cross-section, electrical resistance, tensile strength and strain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-179

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schmidt, M.: Prozeßregelung für das Laserstrahl-Punktschweißen in der Elektronikproduktion, Report from the Institute of Manufacturing Technology. Bamberg (2002).

Google Scholar

[2] Bergström, D.: The absorption of laser light by rough metal surfaces. Dissertation. Luleå University of Technology: Division of Manufacturing Systems Engineering, Department of Applied Physics and Mechanical Engineering (2008).

Google Scholar

[3] Mann, V.: Einfluss von Oberflächen auf die Schweißnahteigenschaften laserstrahlgeschweißter Kupferplatinen. Laser in der Elektronikproduktion und Feinwerktechnik LEF. Fürth (Bavaria) (2015).

Google Scholar

[4] Heider, A.; Arnold, T.; Stritt, P.; Weber, R.; Graf, T.: High-power laser sources enable high-quality laser welding of copper. Paper No. 401. In: ICALEO, San Diego, USW (2014).

DOI: 10.2351/1.5063080

Google Scholar

[5] Mann, V.; Holzer, M.; Gärtner, F.; Hugger, F.; Roth, S.; Schmidt, M.: Influence of filler wires on weld seam properties of laser beam welded dissimilar copper connections. Lasers in Manufacturing Congress 2015. In: Physics Procedia (2015).

DOI: 10.1016/j.phpro.2016.08.045

Google Scholar

[6] Mys, I.; Schmidt, M.: Laser microspot welding in electronics production. In: Advanced Laser Materials Processing Technology: Research and Application (2010), S. 245–60.

DOI: 10.1533/9781845699819.3.242

Google Scholar

[7] Wieland Werke: Material data sheet of K30 (Cu-OF). URL: www. wieland. de.

Google Scholar

[8] Deutsches Kupferinstitut (DKI): Material data sheet of CuSn6, Material data sheet of CuZn37. URL: https: /www. kupferinstitut. de/. Abrufdatum 03. 05. (2015).

Google Scholar

[9] Kawahito, Y.; Matsumoto, N.; Abe, Y.; Katayama, S.: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy. In: Journal of Materials Processing Technology 211 (2011).

DOI: 10.1016/j.jmatprotec.2011.04.002

Google Scholar

[10] S. Kreitlein, A. Höft, S. Schwender, J. Franke: Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production. In: 5th Conference on Learning Factories 32(0), S. 58-63, (2015).

DOI: 10.1016/j.procir.2015.02.219

Google Scholar

[11] S. Freiberger , J. Böhner, S. Kreitlein, R. Steinhilper, J. Franke: Green Factory Bavaria Methodenentwicklung und Wissenstransfer zur Energieeffizienzsteigerung. In: www. elektrotechnik. de - Automation Valley 2012, elektro technik, Vogel Media Business Verlag, (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar

[12] F. Karl, P. Schnellbach, G. Reinhart, J. Böhner, S. Freiberger, R. Steinhilper, S. Kreitlein, J. Franke, T. Maier, J. Pohl, M. F. Zäh: Green Factory Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz. In: wt Werkstattstechnik online Jahrgang 102 (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar