[1]
S.S. Tsalidis, A.J. Dentsoras, Application of design parameters space search for belt conveyor design, Engineering Applications of Artificial Intelligence 10 (1997) 617-629.
DOI: 10.1016/s0952-1976(97)00044-4
Google Scholar
[2]
Y. F Hou, Q.R. Meng Qr., Dynamic characteristics of conveyor belts, Journal of China University of Mining and Technology 18 (2008) 629-633.
DOI: 10.1016/s1006-1266(08)60307-7
Google Scholar
[3]
P.P. Sarkar, S.K. Ghosh, B.R. Gupta, A.K. Bhowmick, Studies on adhesion between rubber and fabric and rubber and rubber in heat resistant conveyor belt, International Journal of Adhesion and Adhesives 9 (1989) 26-32.
DOI: 10.1016/0143-7496(89)90143-7
Google Scholar
[4]
Z. Lihua, Typical Failure Analysis and Processing of Belt Conveyor, Procedia Engineering 26 (2011) 942-946.
DOI: 10.1016/j.proeng.2011.11.2260
Google Scholar
[5]
G.G. Kozhushko, V.A. Kopnov, Fatigue strength functions in shear loading of fabric conveyor belts, International Journal of Fatigue 17 (1995) 539-544.
DOI: 10.1016/0142-1123(95)00037-2
Google Scholar
[6]
G. (Sheng) Chen, J.H. Lee, V. Narravula, T. Kitchin, Friction and noise of rubber belt in low temperature condition: The influence of interfacial ice film, Cold Regions Science and Technology 71 (2012) 95–101.
DOI: 10.1016/j.coldregions.2011.10.007
Google Scholar
[7]
D. Mazurkiewicz, Analysis of the ageing impact on the strength of the adhesive sealed joints of conveyor belts, Journal of Materials Processing Technology 208 (2008) 477-485.
DOI: 10.1016/j.jmatprotec.2008.01.012
Google Scholar
[8]
A.J.G. Nuttall, G. Lodewijks, A.J. Klein Breteler, Modelling rolling contact phenomena in a pouch belt conveyor system, Wear 260 (9-10) (2006) 1081–1089.
DOI: 10.1016/j.wear.2005.07.015
Google Scholar
[9]
S. Zhang, X. Xia, Modeling and energy efficiency optimization of belt conveyors, Applied Energy 88 (9) (2011) 3061–3071.
DOI: 10.1016/j.apenergy.2011.03.015
Google Scholar
[10]
A. Harrison, Non-linear Belt Transient Analysis by Numerical Simulation, Bulk Solids Handling 3 (2008) 1–7.
Google Scholar
[11]
A. Bottero, R. Negre, J. Pastor, S. Turgeman, Finite element method and limit analysis theory for soil mechanics problems, Computer Methods in Applied Mechanics and Engineering 22 (1) (1980) 131–149.
DOI: 10.1016/0045-7825(80)90055-9
Google Scholar
[12]
S.H. Peng, W.V. Chang, A compressible approach in finite element analysis of rubber-elastic materials, Computers & Structures 62 (3) (1997) 573–593.
DOI: 10.1016/s0045-7949(96)00195-2
Google Scholar
[13]
L. Novotný, Finite element method employement to obtain material properties for elasto-plastic simulations, Metalurgija 49 (2) (2010) 409-411.
Google Scholar
[14]
F. Tabaddor, J.R. Stafford, Some aspects of rubber composite finite element analysis, Computers and Structures 21 (1-2) (1985) 327–339.
DOI: 10.1016/0045-7949(85)90253-6
Google Scholar
[15]
L. Xiao, X. Sui, D. Miao, Study on Mechanics of Driving Drum with Superelastic Convexity Surface Covering-Layer Structure, Journal of Bionic Engineering 5 (2008) 60–65.
DOI: 10.1016/s1672-6529(08)60073-6
Google Scholar
[16]
N.S. Prasad, R.A. Sarma, A finite element analysis for the design of a conveyor pulley shell, Computers & Structures 35 (3) (1990) 267–277.
DOI: 10.1016/0045-7949(90)90346-4
Google Scholar
[17]
C. Yang, Parametric finite element analysis on key parts of the conveyor, Applied Mechanics and Materials 101–102 (2012) 755–758.
DOI: 10.4028/www.scientific.net/amm.101-102.755
Google Scholar
[18]
G.Y. Cun, C. Gang, H. Kun, W.Z. Fen, Research on the idler spacing of belt conveyor, Applied Mechanics and Materials 127 (2012) 295–299.
Google Scholar