[1]
A. Altamura, S. Beretta, S. Reliability assessment of hydraulic cylinders considering service loads and flaw distribution, International Journal of Pressure Vessels and Piping 98 (2012) 76-88.
DOI: 10.1016/j.ijpvp.2012.07.006
Google Scholar
[2]
X. Chen, F. Chen, J. Zhou, L. Li, Y. Zhang, Y. Cushioning structure optimization of excavator arm cylinder, Automation in Construction 53 (2015) 120-130.
DOI: 10.1016/j.autcon.2015.03.012
Google Scholar
[3]
B.S. Dhillon, Mining equipment relibility, maintainability and safety, Risk Management 148 (1981) (2008) 209.
Google Scholar
[4]
B.S. Dhillon, O.C. Anude, Mining equipment reliability: A review, Microelectronics Reliability 32(8) (1992) 1137-1156.
DOI: 10.1016/0026-2714(92)90033-h
Google Scholar
[5]
O.P. Gandhi, V.P. Agrawal, K.S. Shishodia, Reliability analysis and evaluation of systems, Reliability Engineering & System Safety 32 (3) (1991) 283-305.
DOI: 10.1016/0951-8320(91)90004-q
Google Scholar
[6]
R. Klaus, A. Urbaniak, Safety algorithms for excavator engine control, Automation in Construction 7 (5) (1998) 391-400.
DOI: 10.1016/s0926-5805(98)00043-0
Google Scholar
[7]
D. Seward, C. Pace, R. Morrey, I. Sommerville, Safety analysis of autonomous excavator functionality, Reliability Engineering & System Safety 70 (1) (2000) 29-39.
DOI: 10.1016/s0951-8320(00)00045-4
Google Scholar
[8]
D. Danilovic, V. Karovic-Maricic, I. Ristovic, Determination of optimal parameters of distributive gas pipeline by dynamic programming method, Petroleum Science and Technology 29 (9) (2011) 924-932.
DOI: 10.1080/10916460903468443
Google Scholar
[9]
G. Stefanovic, I. Ristovic, B. Milutinovic, O. Milosevic, S. Popovic, Sustainable waste management model-case study: Novi Pazar, Journal of Environmental Protection and Ecology 15 (3) (2014) 1005-1012.
Google Scholar
[10]
W. A Weibull, Statistical theory of strength of materials. in: Ingenjörs Vetenskaps Akademien (IVA) Handlingar, in: Proceedings of the Royal Swedish Institute for Engineering Research, No. 151. Stockholm (Sweden): Generalstabens Litografiska Anstalts Förlag, 1939: p.45.
Google Scholar
[11]
W.A. Weibull, Statistical distribution function of wide applicability, Journal of Applied Mechanics 18 (3) (1951) 293-297.
DOI: 10.1115/1.4010337
Google Scholar
[12]
IEC 61649: 2008 Weibull analysis, International Electrotechnical Commission (IEC), Geneve, (2008).
Google Scholar
[13]
S.J. Almalki, S. Nadarajah, Modifications of the Weibull distribution: A review, Reliability Engineering & System Safety 124 (2014) 32–55.
DOI: 10.1016/j.ress.2013.11.010
Google Scholar
[14]
S.J. Almalki, J. Yuan, A new modified Weibull distribution, Reliability Engineering & System Safety 111 (2013) 164-170.
DOI: 10.1016/j.ress.2012.10.018
Google Scholar
[15]
K. Das, A comparative study of exponential distribution vs Weibull distribution in machine reliability analysis in a CMS design, Computers & Industrial Engineering 54 (1) (2008) 12-33.
DOI: 10.1016/j.cie.2007.06.030
Google Scholar
[16]
D.N. Prabhakar Murthy, M. Bulmer, J.A. Eccleston, Weibull model selection for reliability modeling, Reliability Engineering & System Safety 86 (3) (2004) 257-267.
DOI: 10.1016/j.ress.2004.01.014
Google Scholar
[17]
A. Alzghoul, B. Backe, M. Löfstrand, A. Byström, B. Liljedahl, Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application, Computers in Industry 65 (8) (2014).
DOI: 10.1016/j.compind.2014.06.003
Google Scholar
[18]
M.B. Nazir, W. Shaoping, Optimization Based on Convergence Velocity and Reliability for Hydraulic Servo System, Chinese Journal of Aeronautics 22 (4) (2009) 407-412.
DOI: 10.1016/s1000-9361(08)60118-1
Google Scholar
[19]
M.J. Rahimdel, M. Ataei, R. Khalokakaei, S.H. Hoseinie, Reliability-based maintenance scheduling of hydraulic system of rotary drilling machines, International Journal of Mining Science and Technology 23(5) (2013) 771-775.
DOI: 10.1016/j.ijmst.2013.08.023
Google Scholar
[20]
G. Yang, X. Feng, K. Yang, Hydraulic metal structure health diagnosis based on data mining technology, Water Science and Engineering 8 (2) (2015) 158-163.
DOI: 10.1016/j.wse.2015.04.010
Google Scholar
[21]
D.B. Kececioglu, Reliability engineering handbook, Vol. 1, DEStech Publications Inc., Lancaster, (2002).
Google Scholar
[22]
D.B. Kececioglu, Reliability engineering handbook, Vol. 2, DEStech Publications Inc., Lancaster, (2002).
Google Scholar
[23]
P. Dašić, Algorithm approach to determination of reliability of components technical systems, in: Proceedings of the 5th International Conference Research and Development in Mechanical Industy (RaDMI-2005), High Technical Mechanical School, Trstenik, 2005: pp.34-45.
Google Scholar
[24]
P. Dašić, Algorithm approach to determination of reliability of construction machinery components, in: Proceedings of the International Conference on Engineering Design (ICED'90), WDK Heurista, Zurich, 1990: pp.1433-1440.
Google Scholar
[25]
P. Dašić, Determination of reliability of ceramic cutting tools on the basis of comparative analysis of different functions distribution, International Journal of Quality & Reliability Management 18 (4-5) (2001) 433-446.
DOI: 10.1108/02656710110387012
Google Scholar
[26]
P. Dašić, Reliability analysis of the cutting tools made of multi-coatings hard metal, in: Proceedings of the 3rd International Conference The Coatings in Manufacturing Engineering and EUREKA Partnering Event, Aristoteles University Thessaloniki, Laboratory for Machine Tools and Manufacturing Engineering, Thessaloniki, Greece, 2002: pp.91-100.
Google Scholar
[27]
P. Dašić, A. Đorđević, Analysis of different functions of cutting tools failure distribution at the processing on the deep boring, Journal of the Balkan Tribological Association 9 (3) (2003) 370-380.
Google Scholar
[28]
P. Dašić, A. Natsis, G. Petropoulos, Models of reliability for cutting tools: Examples in manufacturing and agricultural engineering, Strojniški vestnik, Journal of Mechanical Engineering 54 (2) (2008) 122-130.
Google Scholar