[1]
I.G. Zhbankov, O.E. Markov, A.V. Perig, Rational parameters of profiled workpieces for upsetting process, The International Journal of Advanced Manufacturing 75 (2014) 865-872.
DOI: 10.1007/s00170-014-5727-5
Google Scholar
[2]
H.S. Valberg, Applied Metal Forming. Cambridge: CUP, 2010. p.476.
Google Scholar
[3]
I.S. Aliiev, I.G. Zhbankov, O.E. Markov, S.A. Bliznyuk, Influence forging of billet by conical plates on strain distribution, Materials Working by Pressure 3 (24) (2010) 64-68. (In Russian).
Google Scholar
[4]
G. Banaszek, A. Stefanik, Theoretical and laboratory modelling of the closure of metallurgical defects during forming of a forging, Journal of Materials Processing Technology 177 (2006) 238–242.
DOI: 10.1016/j.jmatprotec.2006.04.023
Google Scholar
[5]
D. Scarabello, A. Ghiotti, S. Bruschi, FE modelling of large ingot hot forging, International Journal of Material Forming 3 (2010) 335-338.
DOI: 10.1007/s12289-010-0775-3
Google Scholar
[6]
H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka, Y. Imaida, Development of forging process design to closure internal voids, Journal of Mechanical Working Technology 210 (2010) 415–422.
DOI: 10.1016/j.jmatprotec.2009.09.022
Google Scholar
[7]
P. Skubisz, A. Łukaszek-Sołek, J. Kowalski, J.; Sińczak, Closing the internal discontinuities of ingots in open die forging, Steel Research International 79 (2008) 555-562.
DOI: 10.1002/srin.200606433
Google Scholar
[8]
O. Markov, New Technological Process of Shafts Forging, New Technologies and Achievements in Metallurgy and Materials Engineering 1 (2012) 414-418.
Google Scholar
[9]
V.A. Turin, Some methods for quality control of large ingots, Forging and Stamping Production 11 (1977) 35-39. (In Russian).
Google Scholar
[10]
F. Meng, C. Labergere, P. Lafon, Methodology of the shape optimization of forging dies, International Journal of Material Forming 3 (2010) 927-930.
DOI: 10.1007/s12289-010-0920-z
Google Scholar
[11]
J. Nowak, L. Madej, F. Grosman, M. Pietrzyk, Material flow analysis in the incremetal forging technology, International Journal of Material Forming 3 (2010) 931-934.
DOI: 10.1007/s12289-010-0921-y
Google Scholar
[12]
O. Markov, M. Oleshko, V. Mishina, Development of Energy-saving Technological Process of Shafts Forging Weighting More Than 100 Tons without Ingot Upsetting, Metallurgical and Mining Industry 3 (2011) 87-90.
Google Scholar
[13]
C.Y. Park, D.Y. Yang, A study of void crushing in large forgings, Journal of Materials Processing Technology 57 (1998) 129-140.
Google Scholar
[14]
Y. Kim, J. Cho, W. Bae, Efficient forging process to improve the closing effect of the inner void on an ultra-large ingot, Journal of Materials Processing Technology 211 (2011) 1005–1013.
DOI: 10.1016/j.jmatprotec.2011.01.001
Google Scholar
[15]
X. Zhang, J. Cui, W. Chen, Y. Li, A criterion for void closure in large ingots during hot forging, Journal of Materials Processing Technology 209 (2009) 1950–(1959).
DOI: 10.1016/j.jmatprotec.2008.04.051
Google Scholar
[16]
B-A. Behrens, M. Alasti, A. Bouguecha, T. Hadifi, J. Mielke, F. Schäfer, Numerical and experimental investigations on the extension of friction and heat transfer models for an improved simulation of hot forging processes, International Journal of Material Forming 2 (2009).
DOI: 10.1007/s12289-009-0618-2
Google Scholar
[17]
J. -L. Chenot, L. Fourment, R. Ducloux, E. Wey, Finite element modelling of forging and other metal forming processes, International Journal of Material Forming 3 (2011) 359-362.
DOI: 10.1007/s12289-010-0781-5
Google Scholar