[1]
M.J. Benyus, Biomimicry, Innovation inspired by nature, New York: Morrow, (1997).
Google Scholar
[2]
Available on: http: /airlineworld. wordpress. com/2008/10/01/aircraft-winglets.
Google Scholar
[3]
Available on: http: /www. whalepower. com.
Google Scholar
[4]
P. Watts, F.E. Fish, The influence of passive, leading edge tubercles on wing performance; Available on Web site: http: /www. appliedfluids. com/UUST01. pdf.
Google Scholar
[5]
D.S. Miklosovic, M.M. Murray, F.E. Fish, L.E. Howlea, Leading-edge tubercles delay stall on humpback whale Megaptera novaeangliae flippers, Physics of Fluids 16 (5) (2004) 39-42.
DOI: 10.1063/1.1688341
Google Scholar
[6]
Ernst A. van Nierop, Silas Alben, Michael P. Brenner: How Bumpson Whale Flippers Delay Stall: An Aerodynamic Model, Physical Review Letters (2008).
DOI: 10.1103/physrevlett.100.054502
Google Scholar
[7]
A.B. Kesel, U. Philippi, W. Nachtigall, Biomechanical aspects of the insect wing: An analysis using the finite element method, Comp Biol Med. 28 (4) (1998) 423-437.
DOI: 10.1016/s0010-4825(98)00018-3
Google Scholar
[8]
J.M. Wakeling, C.P. Ellington, Dragonfly flight. Lift and power requirements, J Exp Biol. 200 (1997) 583–600.
DOI: 10.1242/jeb.200.3.583
Google Scholar
[9]
D.J. Newman, R. J. Wootton, An approach to the mechanics of pleating in dragonfly wings, J Exp Biol. 126 (1) (1986) 361-372.
DOI: 10.1242/jeb.125.1.361
Google Scholar
[10]
J.S. Chen, J.Y. Chen, Y.F. Chou, On the natural frequencies and mode shapes of dragonfly wings, J. Sound Vibr. 313 (2008) 643-654.
DOI: 10.1016/j.jsv.2007.11.056
Google Scholar
[11]
S. Sudo, K. Tsuyuki, J. Tani, Wing morphology of some insects, JSME Int J Ser C. 43(4) (2000) 895-900.
DOI: 10.1299/jsmec.43.895
Google Scholar
[12]
H. Rajabi, M. Moghadami, A. Darvizeh, Investigation of microstructure, natural frequencies and vibration modes of dragonfly Wing, J Bionic Eng. 8 (2011) 165-173.
DOI: 10.1016/s1672-6529(11)60014-0
Google Scholar
[13]
E.M. Elarbi, N. Qin, Effects of pitching rotation on aerodynamics of tandem flapping wing sections of a hovering dragonfly, Aeronaut J. 114 (1161) (2010) 699-710.
DOI: 10.1017/s0001924000004188
Google Scholar
[14]
C.T. Hsieh, C.F. Kung, C.C. Chang, et al., Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition, J Fluid Mech. 663 (2010) 233-252.
DOI: 10.1017/s0022112010003484
Google Scholar
[15]
Available on: http: /cecs. wright. edu/mav/research/projects. html.
Google Scholar
[16]
E. Marcha, Über die Schwungfedern. Zeitschrift für wissenschaftliche, Zoologie 77 (1904) 606-651.
Google Scholar
[17]
R.R. Graham, The silent flight of owls, Journal of the Royal Aeronautical Society 38 (1934) 837–843.
DOI: 10.1017/s0368393100109915
Google Scholar
[18]
W.H. Thorpe, D.R. Griffin, The lack of ultrasonic components in the flight noise of owls compared with other birds, IBIS 104 (1962) 256-257.
DOI: 10.1111/j.1474-919x.1962.tb08654.x
Google Scholar
[19]
G.M. Lilley, A study of the silent flight of the owl, AAIA Paper (1998) 1998-2340.
Google Scholar
[20]
G.M. Lilley, The prediction of airframe noise and comparison with experiment, Journal of Sound and Vibration 239 (2001) 849-859.
DOI: 10.1006/jsvi.2000.3219
Google Scholar
[21]
G. M. Lilley, A quest for quiet commercial passenger transport aircraft for take-off and landing. In 10th AIAA/CEAS Aeroacoustics Conference, AIAA (2004) 2004-2922.
DOI: 10.2514/6.2004-2922
Google Scholar
[22]
E. Sarradj, C. Fritzschey, T. Geyery, Silent Owl Flight: Bird Flyover Noise Measurements, 16th AIAA/CEAS Aeroacoustics Conference 2010, AIAA (2010) 2010-3991.
DOI: 10.2514/6.2010-3991
Google Scholar
[23]
T. Geyer, E. Sarradj, C. Fritzsche, Porous airfoils: noise reduction and boundary layer effect, International Journal of Aeroacoustics 9 (6) (2010) 787-34.
DOI: 10.1260/1475-472x.9.6.787
Google Scholar
[24]
T. Geyer, E. Sarradj, J. Giesler, M. Hobracht, Experimantal assessment of the noise generated at the leading edge porous airfoils using microphone array techniques, in: 17th Aeroacoustics Conference, Portland, Oregon, (2011).
DOI: 10.2514/6.2011-2713
Google Scholar
[25]
Geyer, T., Sarradj, E., C. Fritzsche, Measurement of the noise generation at the trailing edge of porous airfoils, Experiments in Fluids 48 (2010) 291-308.
DOI: 10.1007/s00348-009-0739-x
Google Scholar
[26]
T. Geyer, E. Sarradj, Noise generation by porous airfoils, in: Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, AIAA, 2007: pp.2007-3719.
DOI: 10.2514/6.2007-3719
Google Scholar
[27]
T. Geyer, E. Sarradaj, C. Fritzsche, Silent Owl Flight: acoustic wind tunnel measurements on prepared winds, 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, (2012).
DOI: 10.2514/6.2012-2230
Google Scholar
[28]
T. Geyer, E. Sarradj, C. Fritzsche, Silent owl flight. Experiments in the aeroacoustic wind tunnel, 35. Jahrestagung für Akustic (DAGAS 2009), (2009).
Google Scholar
[29]
Howe, M. S.: Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures 5(1) (1991) 33–45.
DOI: 10.1016/0889-9746(91)80010-b
Google Scholar
[30]
M.S. Howe, Noise produced by a sawtooth trailing edge, The Journal of the Acoustical Society of America 90 (1991) 482.
DOI: 10.1121/1.401273
Google Scholar
[31]
M.S. Howe, Acoustics of fluid structure interactions. Cambridge University Press, New York, (1998).
Google Scholar
[32]
S. Oerlemans, M. Fisher, T. Maeder, K. Kögler, Reduction of wind turbine noise using optimized airfoils and trailing"edge serrations, AIAA Journal 47 (2009) 1470–1481.
DOI: 10.2514/1.38888
Google Scholar
[33]
M. Gruber, P. Joseph, T.P. Chong, Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations, in: 16th AIAA/CEAS Aeroacoustics Conference, (2010).
DOI: 10.2514/6.2010-3803
Google Scholar
[34]
M. Gruber, P. Joseph, T.P. Chong On the mechanisms of serrated airfoil trailing edge noise reduction, in: Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference, Portland, Oregon, (2011).
DOI: 10.2514/6.2011-2781
Google Scholar
[35]
M. Gruber, M. Azarpeyvand, P. Joseph, Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries, in: Proceedings of the 20th International Congress on Acoustics, Sydney, Australia, (2011).
DOI: 10.2514/6.2013-2011
Google Scholar
[36]
M. Gruber, P. Joseph, T. P. Chong, On the airfoil self-noise reduction by trailing edge serrations of non-insertion type, in: Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, 2012, Colorado Springs, CO, (2012).
DOI: 10.2514/6.2012-2185
Google Scholar
[37]
D. J. Moreau, M. R. Tetlow, L. A. Brooks, C. J. Doolan, Acoustic analysis of flat plate trailing edge noise. in: Proceedings of the 20th International Congress on Acoustics (ICA-2010), Sydney, Australia, (2010).
Google Scholar
[38]
D. J. Moreau, L. A. Brooks, C. J. Doolan, On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate Reynolds number, in: Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, (2012).
DOI: 10.2514/6.2012-2186
Google Scholar
[39]
L. Ren, S. Sun, Xu Ch. Noise reduction mechanism of non-smooth leading edge of owl wing, Journal of Jilin University (Engineering and Technology Edition) 1 (29) (2008).
Google Scholar
[40]
G. Lian, J. Wang, Y. Chen, C. Zhou, J. Liang, L. Ren, The study of owl's silent flight and noise reduction on fan vane with bionic structure, Advances in Natural Science 3 (2) (2010) 192.
Google Scholar
[41]
Available on: http: /www. ziehl-abegg. com/ww/index. html.
Google Scholar
[42]
J.M. Kopania, G. Bogusławski, The Bionic Approach in Noise Reduction the Fluid Machinery, in: Proceedings of the 11th international Symposium on Compressor & Turbine flow systems Theory & Application Areas, SYMKOM 2014 IMP, Lodz, October, (2014).
Google Scholar
[43]
J. Kopania, R. Kaczyński, Selected aspects of automation in fan examinations on standardized test stand, Heating, Ventilation and Air Conditioning, SIGMA-NOT 42 (2) (2010) 76-81.
Google Scholar
[44]
J.W. Jaworski, N. Peake, Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls, J. Fluid Mech. 723 (2013).
DOI: 10.1017/jfm.2013.139
Google Scholar