Bionics - Natural but Innovative Methods Improve the Aeroacoustic Engineering

Article Preview

Abstract:

This paper presents the aeroacoustics result of the trailing edge noise prepared wings two species of owl - Barn owl (Tyto alba), called “good hearing” and Northern hawk-owl (Surnia ulula), called “good seeing”. The acoustic performance comparisons between the Barn owl and Northern hawk-owl show that there are differences between the sound intensity the studied wings. These results prove that the special sound suppression characteristics of wing feather play an important role for their silent flight. Therefore the flat plates with the cutting trailing edge have been studied. At lower speeds, a better noise reduction effect was obtained for the plates with edges as elliptical arcs. On the basis of the above tests it can be concluded that other types of notches on the trailing edge (not just a sawtooth) also reduce the aerodynamic noise of flat plate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-231

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Benyus, Biomimicry, Innovation inspired by nature, New York: Morrow, (1997).

Google Scholar

[2] Available on: http: /airlineworld. wordpress. com/2008/10/01/aircraft-winglets.

Google Scholar

[3] Available on: http: /www. whalepower. com.

Google Scholar

[4] P. Watts, F.E. Fish, The influence of passive, leading edge tubercles on wing performance; Available on Web site: http: /www. appliedfluids. com/UUST01. pdf.

Google Scholar

[5] D.S. Miklosovic, M.M. Murray, F.E. Fish, L.E. Howlea, Leading-edge tubercles delay stall on humpback whale Megaptera novaeangliae flippers, Physics of Fluids 16 (5) (2004) 39-42.

DOI: 10.1063/1.1688341

Google Scholar

[6] Ernst A. van Nierop, Silas Alben, Michael P. Brenner: How Bumpson Whale Flippers Delay Stall: An Aerodynamic Model, Physical Review Letters (2008).

DOI: 10.1103/physrevlett.100.054502

Google Scholar

[7] A.B. Kesel, U. Philippi, W. Nachtigall, Biomechanical aspects of the insect wing: An analysis using the finite element method, Comp Biol Med. 28 (4) (1998) 423-437.

DOI: 10.1016/s0010-4825(98)00018-3

Google Scholar

[8] J.M. Wakeling, C.P. Ellington, Dragonfly flight. Lift and power requirements, J Exp Biol. 200 (1997) 583–600.

DOI: 10.1242/jeb.200.3.583

Google Scholar

[9] D.J. Newman, R. J. Wootton, An approach to the mechanics of pleating in dragonfly wings, J Exp Biol. 126 (1) (1986) 361-372.

DOI: 10.1242/jeb.125.1.361

Google Scholar

[10] J.S. Chen, J.Y. Chen, Y.F. Chou, On the natural frequencies and mode shapes of dragonfly wings, J. Sound Vibr. 313 (2008) 643-654.

DOI: 10.1016/j.jsv.2007.11.056

Google Scholar

[11] S. Sudo, K. Tsuyuki, J. Tani, Wing morphology of some insects, JSME Int J Ser C. 43(4) (2000) 895-900.

DOI: 10.1299/jsmec.43.895

Google Scholar

[12] H. Rajabi, M. Moghadami, A. Darvizeh, Investigation of microstructure, natural frequencies and vibration modes of dragonfly Wing, J Bionic Eng. 8 (2011) 165-173.

DOI: 10.1016/s1672-6529(11)60014-0

Google Scholar

[13] E.M. Elarbi, N. Qin, Effects of pitching rotation on aerodynamics of tandem flapping wing sections of a hovering dragonfly, Aeronaut J. 114 (1161) (2010) 699-710.

DOI: 10.1017/s0001924000004188

Google Scholar

[14] C.T. Hsieh, C.F. Kung, C.C. Chang, et al., Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition, J Fluid Mech. 663 (2010) 233-252.

DOI: 10.1017/s0022112010003484

Google Scholar

[15] Available on: http: /cecs. wright. edu/mav/research/projects. html.

Google Scholar

[16] E. Marcha, Über die Schwungfedern. Zeitschrift für wissenschaftliche, Zoologie 77 (1904) 606-651.

Google Scholar

[17] R.R. Graham, The silent flight of owls, Journal of the Royal Aeronautical Society 38 (1934) 837–843.

DOI: 10.1017/s0368393100109915

Google Scholar

[18] W.H. Thorpe, D.R. Griffin, The lack of ultrasonic components in the flight noise of owls compared with other birds, IBIS 104 (1962) 256-257.

DOI: 10.1111/j.1474-919x.1962.tb08654.x

Google Scholar

[19] G.M. Lilley, A study of the silent flight of the owl, AAIA Paper (1998) 1998-2340.

Google Scholar

[20] G.M. Lilley, The prediction of airframe noise and comparison with experiment, Journal of Sound and Vibration 239 (2001) 849-859.

DOI: 10.1006/jsvi.2000.3219

Google Scholar

[21] G. M. Lilley, A quest for quiet commercial passenger transport aircraft for take-off and landing. In 10th AIAA/CEAS Aeroacoustics Conference, AIAA (2004) 2004-2922.

DOI: 10.2514/6.2004-2922

Google Scholar

[22] E. Sarradj, C. Fritzschey, T. Geyery, Silent Owl Flight: Bird Flyover Noise Measurements, 16th AIAA/CEAS Aeroacoustics Conference 2010, AIAA (2010) 2010-3991.

DOI: 10.2514/6.2010-3991

Google Scholar

[23] T. Geyer, E. Sarradj, C. Fritzsche, Porous airfoils: noise reduction and boundary layer effect, International Journal of Aeroacoustics 9 (6) (2010) 787-34.

DOI: 10.1260/1475-472x.9.6.787

Google Scholar

[24] T. Geyer, E. Sarradj, J. Giesler, M. Hobracht, Experimantal assessment of the noise generated at the leading edge porous airfoils using microphone array techniques, in: 17th Aeroacoustics Conference, Portland, Oregon, (2011).

DOI: 10.2514/6.2011-2713

Google Scholar

[25] Geyer, T., Sarradj, E., C. Fritzsche, Measurement of the noise generation at the trailing edge of porous airfoils, Experiments in Fluids 48 (2010) 291-308.

DOI: 10.1007/s00348-009-0739-x

Google Scholar

[26] T. Geyer, E. Sarradj, Noise generation by porous airfoils, in: Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, AIAA, 2007: pp.2007-3719.

DOI: 10.2514/6.2007-3719

Google Scholar

[27] T. Geyer, E. Sarradaj, C. Fritzsche, Silent Owl Flight: acoustic wind tunnel measurements on prepared winds, 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, (2012).

DOI: 10.2514/6.2012-2230

Google Scholar

[28] T. Geyer, E. Sarradj, C. Fritzsche, Silent owl flight. Experiments in the aeroacoustic wind tunnel, 35. Jahrestagung für Akustic (DAGAS 2009), (2009).

Google Scholar

[29] Howe, M. S.: Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures 5(1) (1991) 33–45.

DOI: 10.1016/0889-9746(91)80010-b

Google Scholar

[30] M.S. Howe, Noise produced by a sawtooth trailing edge, The Journal of the Acoustical Society of America 90 (1991) 482.

DOI: 10.1121/1.401273

Google Scholar

[31] M.S. Howe, Acoustics of fluid structure interactions. Cambridge University Press, New York, (1998).

Google Scholar

[32] S. Oerlemans, M. Fisher, T. Maeder, K. Kögler, Reduction of wind turbine noise using optimized airfoils and trailing"edge serrations, AIAA Journal 47 (2009) 1470–1481.

DOI: 10.2514/1.38888

Google Scholar

[33] M. Gruber, P. Joseph, T.P. Chong, Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations, in: 16th AIAA/CEAS Aeroacoustics Conference, (2010).

DOI: 10.2514/6.2010-3803

Google Scholar

[34] M. Gruber, P. Joseph, T.P. Chong On the mechanisms of serrated airfoil trailing edge noise reduction, in: Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference, Portland, Oregon, (2011).

DOI: 10.2514/6.2011-2781

Google Scholar

[35] M. Gruber, M. Azarpeyvand, P. Joseph, Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries, in: Proceedings of the 20th International Congress on Acoustics, Sydney, Australia, (2011).

DOI: 10.2514/6.2013-2011

Google Scholar

[36] M. Gruber, P. Joseph, T. P. Chong, On the airfoil self-noise reduction by trailing edge serrations of non-insertion type, in: Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, 2012, Colorado Springs, CO, (2012).

DOI: 10.2514/6.2012-2185

Google Scholar

[37] D. J. Moreau, M. R. Tetlow, L. A. Brooks, C. J. Doolan, Acoustic analysis of flat plate trailing edge noise. in: Proceedings of the 20th International Congress on Acoustics (ICA-2010), Sydney, Australia, (2010).

Google Scholar

[38] D. J. Moreau, L. A. Brooks, C. J. Doolan, On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate Reynolds number, in: Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, (2012).

DOI: 10.2514/6.2012-2186

Google Scholar

[39] L. Ren, S. Sun, Xu Ch. Noise reduction mechanism of non-smooth leading edge of owl wing, Journal of Jilin University (Engineering and Technology Edition) 1 (29) (2008).

Google Scholar

[40] G. Lian, J. Wang, Y. Chen, C. Zhou, J. Liang, L. Ren, The study of owl's silent flight and noise reduction on fan vane with bionic structure, Advances in Natural Science 3 (2) (2010) 192.

Google Scholar

[41] Available on: http: /www. ziehl-abegg. com/ww/index. html.

Google Scholar

[42] J.M. Kopania, G. Bogusławski, The Bionic Approach in Noise Reduction the Fluid Machinery, in: Proceedings of the 11th international Symposium on Compressor & Turbine flow systems Theory & Application Areas, SYMKOM 2014 IMP, Lodz, October, (2014).

Google Scholar

[43] J. Kopania, R. Kaczyński, Selected aspects of automation in fan examinations on standardized test stand, Heating, Ventilation and Air Conditioning, SIGMA-NOT 42 (2) (2010) 76-81.

Google Scholar

[44] J.W. Jaworski, N. Peake, Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls, J. Fluid Mech. 723 (2013).

DOI: 10.1017/jfm.2013.139

Google Scholar