Frictional Torque Behavior in Actively-Closed Actuated Dry Clutch: The Temperature Influence

Article Preview

Abstract:

Automated Manual Transmission (AMT) systems are generally constituted by a dry or wet clutch assembly and a multi-speed gearbox, both equipped with electro-mechanical or electro-hydraulic actuators, which are driven by a control unit, the transmission control unit (TCU). In this transmission type the quality of the vehicle propulsion as perceived by the driver is largely dependent on the quality of the control strategies. This paper aims at providing to control engineers a reliable mathematical model of the frictional torque characteristic of 'actively closed' dry clutch along with the influence of the temperature on the characteristic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-248

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lucente, M. Montanari, C. Rossi, Modelling of an Automated Manual Transmission System, Mechatronics 17 (2007) 73-91.

DOI: 10.1016/j.mechatronics.2006.11.002

Google Scholar

[2] F. Vasca, L. Iannelli, A. Senatore, M. Taglialatela Scafati, Modeling Torque Transmissibility for Automotive Dry Clutch Engagement, American Control Conference 2008 (2008) 306-311.

DOI: 10.1109/acc.2008.4586508

Google Scholar

[3] A. Senatore, Advances in the automotive systems: an overview of dual clutch transmissions, Recent Patents on Mech. Eng. 2 (2) (2009) 93-101.

DOI: 10.2174/2212797610902020093

Google Scholar

[4] N. Cappetti, M. Pisaturo, A. Senatore, Modelling the Cushion Spring Characteristic to Enhance the Automated Dry-Clutch Performance: the Temperature Effect. Proc IMech Part D: J Autom. Eng. 226 (11) (2012) 1472 - 1482.

DOI: 10.1177/0954407012445967

Google Scholar

[5] A. Senatore, V. D'Agostino, R. Di Giuda, V. Petrone, Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence, Tribology International 44 (2011).

DOI: 10.1016/j.triboint.2011.05.022

Google Scholar

[6] F. Vasca, L. Iannelli, A. Senatore, G. Reale, Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement, IEEE/ASME Transaction on Mechatronics 16 (3) (2011) 564-573.

DOI: 10.1109/tmech.2010.2047509

Google Scholar

[7] L. Glielmo, L. Iannelli, V. Vacca, V. Vasca, Gearshift control for automated manual transmissions, IEEE/ASME Trans. Mechatronics 11 (1) (2006) 17–26.

DOI: 10.1109/tmech.2005.863369

Google Scholar

[8] L. Glielmo, F. Vasca, Optimal Control of Dry Clutch Engagement, in: SAE 2000 World Congr, Detroit, MI, SAE Technical Paper 2000-01-0837, (2000).

DOI: 10.4271/2000-01-0837

Google Scholar

[9] P. Dolcini, C. Canudas de Wit, H. Bechart, H, Lurch Avoidance Strategy and its Implementation in AMT Vehicles, Mechatronics 18 (2008) 289–300.

DOI: 10.1016/j.mechatronics.2008.02.001

Google Scholar

[10] A. Bemporad, F. Borrelli, L. Glielmo, F. Vasca, Hybrid Control of Dry Clutch Engagement, in: Proceedings of the European Control Conference, Porto, Portugal, (2001).

DOI: 10.23919/ecc.2001.7075980

Google Scholar

[11] V. D'Agostino, M. Pisaturo, A. Senatore, N. Cappetti, Model predictive control for electro-hydraulic actuated dry clutch in AMT transmissions, in: Proceedings of the 14th International Conference Mechatronics Forum, Karlstad, Sweden, (2014).

Google Scholar

[12] L. Glielmo, P.O. Gutman, L. Iannelli, F. Vasca, Robust Smooth Engagement of an Automotive Dry Clutch, in: Proceedings of the 4th IFAC Symposium Mechatronics Systems", Heidelberg, Germany, 2006: p.632–637.

DOI: 10.3182/20060912-3-de-2911.00110

Google Scholar

[13] G.J.L. Naus, M. Beenakkers, R. Huisman, R., M.J.G. van de Molengraft, M. Steinbuch, Robust Control to Suppress Clutch Judder, in: Proceedings of the 8th International Symposium. Advanced Vehicle Control, Kobe, Japan, (2008).

DOI: 10.1080/00423110903540744

Google Scholar

[14] H.H. Miyasato, V.G. Segala Simionatto, M.J. Dias, Linear powertrain models for NVH phenomena evaluation, in: Proceedings of the 15th International Symposium on Dynamic Problems of Mechanics, (DINAME-2013) Buzios, RJ, Brazil, 2013: pp.17-22.

Google Scholar

[15] V.G. Segala Simionatto, H.H. Miyasato, M.J. Dias, On the Influence of the Clutch Disk's Pre-Damper Parameters on Shuffle and Clunk Phenomena in Powertrains, in: Proceedings of the 15th International Symposium on Dynamic Problems of Mechanics, (DINAME-2013) Buzios, RJ, Brazil, (2013).

Google Scholar

[16] E. -A. M.A. Rabeih, Torsional vibration analysis of automotive drivelines, Ph.D. Thesis, Mechanical Engineering Dept., The University of Leeds, (1997).

Google Scholar

[17] D. Centea, H. Rahnejat, M.T. Menday, Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder), Applied Mathematical Modelling 25 (2001) 177-192.

DOI: 10.1016/s0307-904x(00)00051-2

Google Scholar

[18] A. Crowther, N. Zhang, D. K. Liu, J. Jeyakumaran, Analysis and simulation of clutch engagement judder and stick-slip in automotive powertrain systems, Proc IMechE Part D - J. of Autom. Eng. 218 (12) (2004) 1427–1446.

DOI: 10.1243/0954407042707731

Google Scholar

[19] S. Kirschstein, The impact of launch control on the vibration behaviour of a dual clutch transmission powertrain, VDI Berichte, 1971 (2007) 197–217.

Google Scholar

[20] A. Fidlin, O. Drozdetskaya, B. Waltersberger, On the minimal model for the low frequency wobbling instability of friction discs, European Journal of Mechanics A/Solids 30 (2011) 665-672.

DOI: 10.1016/j.euromechsol.2011.03.009

Google Scholar

[21] P. Wickramarachi, R. Singh, Analysis of Friction-Induced Vibration Leading to Eek Noise in a Dry Friction Clutch, Proc. of Inter-Noise 2002, Dearborn, MI, USA, (2002).

DOI: 10.3397/1.2839252

Google Scholar

[22] P. Wickramarachi, R. Singh, G. Bailey, Analysis of friction-induced vibration leading to Eek, noise in a dry friction clutch, Noise Control Eng. J., 53 (4) (2005) 122-128.

DOI: 10.3397/1.2839252

Google Scholar

[23] A. Senatore, D. Hochlenert, V. D'Agostino, U. von Wagner, Driveline dynamics simulation and analysis of the dry clutch friction-induced vibrations in the eek frequency range, in: Proceedings of ASME-IMECE 2013, San Diego, CA, (2013).

DOI: 10.1115/imece2013-64597

Google Scholar

[24] A. Senatore, Vibrations induced by electro-actuated dry clutch in the Eek frequency: excitation in gear-shifting operations, Journal of Mechatronics 2 (4) (2014) 301-311.

DOI: 10.1166/jom.2014.1071

Google Scholar

[25] H. Feng, M. Yimin, L. Juncheng, Study on Heat Fading of Phenolic Resin Friction Material for Micro-automobile Clutch. in: Proceedings of the International Conference on Measuring Technology and Mechatronics Automation, 2010: pp.596-599.

DOI: 10.1109/icmtma.2010.386

Google Scholar

[26] K.L. Kimming, I. Agner, Double Clutch – Wet or Dry, this is the question, LuK Symposium, (2006).

Google Scholar

[27] B. Czel, K. Varadi, A. Albers, M. Mitariu, FE thermal analysis of a ceramic clutch, Tribol. International 42 (2009) 714–723.

DOI: 10.1016/j.triboint.2008.10.006

Google Scholar

[28] B. Armstrong-Helouvry, Stick slip and control in low speed motion, IEEE Trans. Autom. Control 38 (1993) 1483–1496.

DOI: 10.1109/9.241562

Google Scholar

[29] J.C. Heap, Application of variable coefficient of friction and wear to block brakes and clutches. J Mech Eng Sci. 8 (1996) 406–418.

DOI: 10.1243/jmes_jour_1966_008_052_02

Google Scholar

[30] S. Herscovici, Determining the static and dynamic coefficient of friction and its causes for variation, SAE Paper 690570; (1969).

DOI: 10.4271/690570

Google Scholar

[31] M.R. Raghavan, R. Jayachandran, Analysis of the performance characteristics of a two-inertia power transmission system with a plate clutch, J Mech Mach Theory. 24 (1989) 499–503.

DOI: 10.1016/0094-114x(89)90006-2

Google Scholar

[32] K. Poser, K.H. Zum Gahr, J. Schneider, Development of Al2O3 based ceramics for dry friction systems, Wear 259 (2005) 529–538.

DOI: 10.1016/j.wear.2004.11.007

Google Scholar

[33] D. Centea, H. Rahnejat, M.T. Menday, The influence of the interface coefficient of friction upon the propensity to judder in automotive clutches, Proc IMechE Part D: J Autom Eng. 213 (1999) 245-258.

DOI: 10.1243/0954407991526847

Google Scholar

[34] P. Maucher, Clutch chatter. in: Proceedings of the 4th international symposium on torsional vibrations in the drive train, Baden-Baden, (1990).

Google Scholar