Orbital Forming of Flange Parts under Uncertainty

Article Preview

Abstract:

Uncertainty in the properties of semi-finished parts can cause fluctuations in the product properties, especially if they have a strong effect on the process and cannot be compensated by process adjustments. Incremental forming processes have the potential to react to changing conditions by adapting the tool movement during the process. This paper analyzes the feasibility of controlling material flow in an orbital forming process in order to selectively fill those geometric elements which were specified with narrow tolerances by the designer. The effect of different process parameters on the mushroom effect and the degree of mold filling are analyzed by FEM simulations and experiments. In order to realize online monitoring and control, an estimation model is introduced, which maps signals from sensors and the process control to the geometric target values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-129

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lange, K.; Pöhlandt, K., Handbook of metal forming, McGraw-Hill, (1985).

Google Scholar

[2] Schondelmaier, J., Grundlagenuntersuchung über das Taumelpressen (in German, Basic Investigantions on Orbital Forming), Springer-Verlag, Berlin Heidelberg New York, (1992).

Google Scholar

[3] Munshi, M.; Shah, K.; Cho, H.; Altan, T., Finite element analysis of orbital forming used in spindle/inner ring assembly, in: Proc. ICTP, (2005).

Google Scholar

[4] Han, X.; Hua, L., Effect of size of the cylindrical workpiece on the cold rotary-forging process, Materials & Design, Vol. 30 (2009), pp.2802-2812 (doi: 10. 1016/j. matdes. 2009. 01. 021).

DOI: 10.1016/j.matdes.2009.01.021

Google Scholar

[5] Liu, G.; Yuan, S. J.; Wang, Z. R.; Zhou, D. C., Explanation of the mushroom effect in the rotary forging of a cylinder, Journal of Materials Processing Technology, Vol. 151 (2004), pp.178-182 (doi: 10. 1016/j. jmatprotec. 2004. 04. 035).

DOI: 10.1016/j.jmatprotec.2004.04.035

Google Scholar

[6] Groche, P.; Scheitza, M.; Kraft, M.; Schmitt, S., Increased total flexibility by 3D Servo Presses, CIRP Annals - Manufacturing Technology, Vol. 59 (2010), pp.267-270 (doi: 10. 1016/j. cirp. 2010. 03. 013).

DOI: 10.1016/j.cirp.2010.03.013

Google Scholar

[7] Brill, K., Modelwerkstoffe für die Massivumformung von Metallen (in German, Model Materials for Bulk Metal Forming), Technische Hochschule Hannover, Hannover, (1963).

Google Scholar

[8] Bretz, A.; Calmano, S.; Gally, T.; Götz, B.; Platz, R.; Würtenberger, J., Darstellung passiver, semi-aktiver und aktiver Systeme auf Basis eines Prozessmodells (Representation of Passive, Semi-Active and Active Systems Based on a Prozess Model), unreleased paper by the SFB 805 on http: /www. sfb805. tu-darmstadt. de/media/sfb805/f_downloads/150310_AKIII_Definitionen_aktiv-passiv. pdf, (2015).

Google Scholar