Variability in Composite Materials Properties

Article Preview

Abstract:

Composite materials are created as a quite complex architecture which includes a fibre reinforcement structure and matrix material. Many material parameters play a role when composite structures are modelled, e.g. in finite element models. In addition to the properties of the raw fibre and matrix materials which are used, also geometrical parameters have a significant effect on structural characteristics. Fibre reinforcement geometry together with material properties of fibre and matrix determine homogenised material properties.The first part of the paper gives an overview of the most important processes which are used in composites processing industry. The factors which affect variability are also listed, and the effect of variability on material parameters is mentioned as well. The second part of the paper elaborates the identification of geometrical variability of the fibre reinforcement structure which is encountered with one particular type of composite material, namely a twill 2/2 carbon fibre weave with an epoxy matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-33

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Oberkampf, S. DeLand, B. Rutherford, K. Diegert, K. Alvin, K., A new methodology for the estimation of total uncertainty in computational simulation, Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Conference, AIAA-99-1612, 3061-3083 (1999).

DOI: 10.2514/6.1999-1612

Google Scholar

[2] D. Vandepitte, D. Moens, Quantification of Uncertain and Variable Model Parameters in NonDeterministic Analysis, IUTAM 2009, IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, 27, 15-28 (2011).

DOI: 10.1007/978-94-007-0289-9_2

Google Scholar

[3] A. Freudenthal, Fatigue sensitivity and reliability of mechanical systems, especially aircraft structures, WADD Technical Report 61-53 (1961).

Google Scholar

[4] E. Vanmarcke, Random fields: analysis & synthesis, MIT Press, Cambridge, MA, London (1983).

Google Scholar

[5] W. Verhaeghe, W. Desmet, D. Vandepitte, D. Moens, Interval fields to represent uncertainty on the output side of a static FE analysis, Computer methods in Applied Mechanics and Engineering, 260, 50-62 (2013).

DOI: 10.1016/j.cma.2013.03.021

Google Scholar

[6] C.T. Sun, Mechanics of aircraft structures, John Wiley & Sons, Inc. (2006).

Google Scholar

[7] P.K. Mallick, Fiber-reinforced composites: Materials, Manufacturing and Design, 3rd edition, CRC Press - Taylor & Francis Group (2007).

Google Scholar

[8] M. Kawai, N. Honda, Off-axis fatigue behavior of a carbon/epoxy cross-ply laminate and predictions considering inelasticity and in situ strength of embedded plies, International Journal of Fatigue, 30 (10-11), 1743-1755 (2008).

DOI: 10.1016/j.ijfatigue.2008.02.009

Google Scholar

[9] D.C. Charmpis, G.I. Schuëller, M.F. Pellissetti, The need for linking micromechanics of materials with stochastic finite elements: a challenge for materials science, Computational Materials Science, 41, 1, 27-37 (2007).

DOI: 10.1016/j.commatsci.2007.02.014

Google Scholar

[10] H. Bale, M. Blacklock, M.R. Begley, D.B. Marshall, B.N. Cox, R.O. Ritchie, Characterizing three-dimensional textile ceramic composites using synchrotron x-ray micro-computedtomography, Journal of the American Ceramic Society, 95(1), 392-402 (2012).

DOI: 10.1111/j.1551-2916.2011.04802.x

Google Scholar

[11] A. Vanaerschot, B. Cox, S.V. Lomov, D. Vandepitte, Stochastic multi-scale modelling of textile composites based on internal geometry variability, Computers & Structures, 122, 55-64 (2013).

DOI: 10.1016/j.compstruc.2012.10.026

Google Scholar

[12] M. Blacklock, H. Bale, M. Begley, B. Cox, Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model, Journal of the Mechanics and Physics of Solids, 60(3), 451-470 (2012).

DOI: 10.1016/j.jmps.2011.11.010

Google Scholar

[13] M. Vorechovský, Simulation of simply cross correlated random fields by series expansion methods, Structural Safety, 30(4), 337-363 (2008).

DOI: 10.1016/j.strusafe.2007.05.002

Google Scholar

[14] M. Vorechovský, D. Novák, Correlation control in small-sample Monte Carlo type simulations 1: A simulated annealing approach, Probabilistic Engineering Mechanics, 24(3), 452-462 (2009).

DOI: 10.1016/j.probengmech.2009.01.004

Google Scholar

[15] A. Vanaerschot, B. Cox, S.V. Lomov, D. Vandepitte, Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography, Composites A, 44, 122-131 (2013).

DOI: 10.1016/j.compositesa.2012.08.020

Google Scholar

[16] A. Vanaerschot, B. Cox, S.V. Lomov, D. Vandepitte, Simulation of the cross-correlated positions of in-plane tow centroids in textile composites based on experimental data, Composite Structures, 116, 75-83 (2014).

DOI: 10.1016/j.compstruct.2014.05.017

Google Scholar

[17] http: /www. mtm. kuleuven. be/Onderzoek/Composites/software/wisetex (2015).

Google Scholar

[18] M. Olave, A. Vanaerschot, S.V. Lomov, D. Vandepitte, Internal geometry variability of two woven composites and related variability of the stiffness, Polymer Composites, 33 (8), 1335-1350 (2012).

DOI: 10.1002/pc.22260

Google Scholar