[1]
W. Oberkampf, S. DeLand, B. Rutherford, K. Diegert, K. Alvin, K., A new methodology for the estimation of total uncertainty in computational simulation, Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Conference, AIAA-99-1612, 3061-3083 (1999).
DOI: 10.2514/6.1999-1612
Google Scholar
[2]
D. Vandepitte, D. Moens, Quantification of Uncertain and Variable Model Parameters in NonDeterministic Analysis, IUTAM 2009, IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, 27, 15-28 (2011).
DOI: 10.1007/978-94-007-0289-9_2
Google Scholar
[3]
A. Freudenthal, Fatigue sensitivity and reliability of mechanical systems, especially aircraft structures, WADD Technical Report 61-53 (1961).
Google Scholar
[4]
E. Vanmarcke, Random fields: analysis & synthesis, MIT Press, Cambridge, MA, London (1983).
Google Scholar
[5]
W. Verhaeghe, W. Desmet, D. Vandepitte, D. Moens, Interval fields to represent uncertainty on the output side of a static FE analysis, Computer methods in Applied Mechanics and Engineering, 260, 50-62 (2013).
DOI: 10.1016/j.cma.2013.03.021
Google Scholar
[6]
C.T. Sun, Mechanics of aircraft structures, John Wiley & Sons, Inc. (2006).
Google Scholar
[7]
P.K. Mallick, Fiber-reinforced composites: Materials, Manufacturing and Design, 3rd edition, CRC Press - Taylor & Francis Group (2007).
Google Scholar
[8]
M. Kawai, N. Honda, Off-axis fatigue behavior of a carbon/epoxy cross-ply laminate and predictions considering inelasticity and in situ strength of embedded plies, International Journal of Fatigue, 30 (10-11), 1743-1755 (2008).
DOI: 10.1016/j.ijfatigue.2008.02.009
Google Scholar
[9]
D.C. Charmpis, G.I. Schuëller, M.F. Pellissetti, The need for linking micromechanics of materials with stochastic finite elements: a challenge for materials science, Computational Materials Science, 41, 1, 27-37 (2007).
DOI: 10.1016/j.commatsci.2007.02.014
Google Scholar
[10]
H. Bale, M. Blacklock, M.R. Begley, D.B. Marshall, B.N. Cox, R.O. Ritchie, Characterizing three-dimensional textile ceramic composites using synchrotron x-ray micro-computedtomography, Journal of the American Ceramic Society, 95(1), 392-402 (2012).
DOI: 10.1111/j.1551-2916.2011.04802.x
Google Scholar
[11]
A. Vanaerschot, B. Cox, S.V. Lomov, D. Vandepitte, Stochastic multi-scale modelling of textile composites based on internal geometry variability, Computers & Structures, 122, 55-64 (2013).
DOI: 10.1016/j.compstruc.2012.10.026
Google Scholar
[12]
M. Blacklock, H. Bale, M. Begley, B. Cox, Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model, Journal of the Mechanics and Physics of Solids, 60(3), 451-470 (2012).
DOI: 10.1016/j.jmps.2011.11.010
Google Scholar
[13]
M. Vorechovský, Simulation of simply cross correlated random fields by series expansion methods, Structural Safety, 30(4), 337-363 (2008).
DOI: 10.1016/j.strusafe.2007.05.002
Google Scholar
[14]
M. Vorechovský, D. Novák, Correlation control in small-sample Monte Carlo type simulations 1: A simulated annealing approach, Probabilistic Engineering Mechanics, 24(3), 452-462 (2009).
DOI: 10.1016/j.probengmech.2009.01.004
Google Scholar
[15]
A. Vanaerschot, B. Cox, S.V. Lomov, D. Vandepitte, Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography, Composites A, 44, 122-131 (2013).
DOI: 10.1016/j.compositesa.2012.08.020
Google Scholar
[16]
A. Vanaerschot, B. Cox, S.V. Lomov, D. Vandepitte, Simulation of the cross-correlated positions of in-plane tow centroids in textile composites based on experimental data, Composite Structures, 116, 75-83 (2014).
DOI: 10.1016/j.compstruct.2014.05.017
Google Scholar
[17]
http: /www. mtm. kuleuven. be/Onderzoek/Composites/software/wisetex (2015).
Google Scholar
[18]
M. Olave, A. Vanaerschot, S.V. Lomov, D. Vandepitte, Internal geometry variability of two woven composites and related variability of the stiffness, Polymer Composites, 33 (8), 1335-1350 (2012).
DOI: 10.1002/pc.22260
Google Scholar