[1]
J. Błażewicz, K.H. Ecker, E. Pesch, G. Schmidt, J. Węglarz, Scheduling Computer and Manufacturing Processes, Springer, Berlin, (2007).
DOI: 10.1007/978-3-662-04363-9
Google Scholar
[2]
J.C. Billaut, A. Moukrim, E. Sanlaville, Flexibility and Robustness in Scheduling. John Wiley & Sons, Hoboken, (2010).
DOI: 10.1002/9780470611432.ch1
Google Scholar
[3]
F. Xhafa, A. Abraham, Metaheuristics for Scheduling in Industrial and Manufacturing Applications (Studies in Computational Intelligence), Springer, Berlin Heidelberg, (2008).
DOI: 10.1007/978-3-540-78985-7
Google Scholar
[4]
G.F. Luger, W.A. Stubblefield, Artificial intelligence: structures and strategies for complex problem solving, sixth edition, The Benjamin/Cummings, Pearson (Addison-Wesley), (2009).
Google Scholar
[5]
P. Brucker, S. Knust, Complex Scheduling, Springer-Verlag, Berlin Heidelberg, (2012).
Google Scholar
[6]
Z. Xie, S. Hao, G. Ye, G. Tan, A new algorithm for complex product flexible scheduling with constraint between jobs, Computers & Industrial Engineering. 57 (2009), 766–772.
DOI: 10.1016/j.cie.2009.02.004
Google Scholar
[7]
P. Lopez, F. Roubellat, Production Scheduling, John Wiley & Sons, Hoboken, (2010).
Google Scholar
[8]
M.L. Pinedo, Scheduling Theory, Algorithms and Systems, Springer, New York, (2012).
Google Scholar
[9]
A. Dymarek, T. Dzitkowski, Passive reduction of system vibrations to the desired amplitude value, Journal of Vibroengineering. 15, issue. 3 (2013) 1254-1264.
Google Scholar
[10]
G. Ćwikła, Methods of manufacturing data acquisition for production management – a review, Advanced Materials Research. 837 (2014) 618-623.
DOI: 10.4028/www.scientific.net/amr.837.618
Google Scholar
[11]
M. Hetmańczyk, The multilevel prognosis system based on matrices and digraphs methods, in: Mechatronic systems and materials V. Z. Gosiewski, Z. Kulesza (Eds. ), Solid State Phenomena. 199 (2013) 79-84.
DOI: 10.4028/www.scientific.net/ssp.199.79
Google Scholar
[12]
S. Zolkiewski, Numerical Application for Dynamical Analysis of Rod and Beam Systems in Transportation, Solid State Phenomena. 164 (2010) 343-348.
DOI: 10.4028/www.scientific.net/ssp.164.343
Google Scholar
[13]
G. Salvendy, Handbook of Industrial Engineering: Technology and Operations Management, Wiley, New York, (2001).
Google Scholar
[14]
K. Kalinowski, C. Grabowik, W. Kempa, I. Paprocka, The graph representation of multivariant and complex processes for production scheduling, in: Modern Technologies in Industrial Engineering. Advanced Materials Research. 837 (2014) 422-427.
DOI: 10.4028/www.scientific.net/amr.837.422
Google Scholar
[15]
R. Marinescu, R. Dechter, AND/OR Tree Search for Constraint Optimization, Proceedings of the 6th International Workshop on Preferences and Soft Constraints, Toronto, (2004).
Google Scholar
[16]
S. Even, Graph Algorithms, Cambridge University Press, New York, (2011).
Google Scholar
[17]
W. Imrich, S. Klavzar, D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product, AK PETERS LTD. Wellesley, Massachusetts, (2008).
Google Scholar
[18]
K. Kalinowski, C. Grabowik, I. Paprocka, W. Kempa, Interaction of the decision maker in the process of production scheduling, Advanced Materials Research. 1036 (2014) 830-833.
DOI: 10.4028/www.scientific.net/amr.1036.830
Google Scholar
[19]
K. Kalinowski, C. Grabowik, W. Kempa, I. Paprocka, The procedure of reaction to unexpected events in scheduling of manufacturing systems with discrete production flow, Advanced Materials Research. 1036 (2014) 840-845.
DOI: 10.4028/www.scientific.net/amr.1036.840
Google Scholar
[20]
Ch. Yan, Y. Liao, A. Banerjee, Multi-product lot scheduling with backordering and shelf-life constraints, Omega. 41 (2013) 510–516.
DOI: 10.1016/j.omega.2012.06.004
Google Scholar