[1]
I. Alig, D. Lellinger, S.M. Dudkin, P. Potschke, Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: recovery after shear and crystallization. Polymer. 48 (2007) 1020–1029.
DOI: 10.1016/j.polymer.2006.12.035
Google Scholar
[2]
H.D. Bao, Z.X. Guo, J. Yu, Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites. Polymer. 49, 17 (2008) 3826-3831.
DOI: 10.1016/j.polymer.2008.06.024
Google Scholar
[3]
W.X. Zhang, T.J. Wang, X. Chen, Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int. J. Plasticity. 26 (2010) 957-975.
DOI: 10.1016/j.ijplas.2009.12.002
Google Scholar
[4]
S. Sathyanarayana, C. Hübner, Thermoplastic Nanocomposites with Carbon Nanotubes, J. Njuguna (ed. ), Structural Nanocomposites, Engineering Materials, Springer-Verlag Berlin Heidelberg, (2013).
DOI: 10.1007/978-3-642-40322-4_2
Google Scholar
[5]
J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gunko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44 (2006) 1624-1652.
DOI: 10.1016/j.carbon.2006.02.038
Google Scholar
[6]
A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angewandte Chemie. International Edition, 41, 11 (2002) 1853-1859.
DOI: 10.1002/1521-3773(20020603)41:11<1853::aid-anie1853>3.0.co;2-n
Google Scholar
[7]
T. Villmow, S. Pegel, P. Pötschke, U. Wagenknecht, Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos. Sci. Technol. 68 (2008) 777–789.
DOI: 10.1016/j.compscitech.2007.08.031
Google Scholar
[8]
S. Wang, J. Qiu, Compos. Part B–Eng. 41, 7 (2010) 533.
Google Scholar
[9]
X. Wang, P.D. Bradford, W. Liu, H. Zhao, Y. Inoue, J.P. Maria, Q. Li, F.G. Yuan, Y. Zhu, Mechanical and electrical property improvement in CNT/nylon composites through drawing and stretching. Compos. Sci. Technol. 71 (2011) 1677–1683.
DOI: 10.1016/j.compscitech.2011.07.023
Google Scholar
[10]
S. Kanagaraj, R.F. Varanda, T.V. Zhiltsova, M.S.A. Oliveira, J.A.O. Simoes, Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 67 (2007) 3071–3077.
DOI: 10.1016/j.compscitech.2007.04.024
Google Scholar
[11]
T. Soitong, J. Pumchusak, The relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibers. J. Mater. Sci. 46 (2011) 1697–1704.
DOI: 10.1007/s10853-010-4987-1
Google Scholar
[12]
K. Enomoto, T. Yasuhara, N. Ohtake, K. Kato, Injection molding of polystyrene matrix composites filled with vapor grown carbon fiber. JSME Int. J A – Solid M. 46 (2003) 353–358.
DOI: 10.1299/jsmea.46.353
Google Scholar
[13]
E.C. Aifantis, The physics of plastic deformation. Int. J. Plasticity. 3 (1987) 211–247.
Google Scholar
[14]
E. Krempl, F. Khan, Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers. Int. J. Plasticity. 19 (2003)1069–1095.
DOI: 10.1016/s0749-6419(03)00002-0
Google Scholar
[15]
S. Lee, W.G. Knauss, A note on the determination of relaxation and creep data from ramp tests. Mech. Time-Depend. Mater. 4 (2000) 1–7.
Google Scholar
[16]
H. Lu, B. Wang, J. Ma, G. Huang, H. Viswanathan, Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7 (2003) 189–207.
DOI: 10.1023/b:mtdm.0000007217.07156.9b
Google Scholar
[17]
M.L. Oyen, R.F. Cook, Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18 (2003) 139–150.
DOI: 10.1557/jmr.2003.0020
Google Scholar
[18]
C. Bernard, V. Keryvin, J.C. Sangleboeuf, T. Rouxel, Indentation creep of window glass around glass transition. Mech. Mater. 42 (2010) 196–206.
DOI: 10.1016/j.mechmat.2009.11.008
Google Scholar
[19]
F. Stan, C. Fetecau, Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation, Mech. Time-Depend. Mater. 17 (2013) 205-221.
DOI: 10.1007/s11043-012-9198-5
Google Scholar
[20]
Ganß, M., Satapathy, B.K., Thunga, M., Weidisch, R., Potschke, P., Janke, A., Temperature dependence of creep behavior of PP–MWNT nanocomposites. Macromol. Rapid Commun. 28 (2007) 1624–1633.
DOI: 10.1002/marc.200700288
Google Scholar
[21]
Vlasveld, D.P.N., Bersee, H.E.N., Picken, S.J., 2005. Creep and physical aging behaviour of PA6 nanocomposites. Polymer 46, 12539–12545.
DOI: 10.1016/j.polymer.2005.10.120
Google Scholar
[22]
O. Starkova, S.T. Buschhorn, E. Mannov, K. Schulte, A. Aniskevich, Creep and recovery of epoxy/MWCNT nanocomposites, Composites: Part A. 43 (2012) 1212–1218.
DOI: 10.1016/j.compositesa.2012.03.015
Google Scholar
[23]
Yu Jia, Zhimin Jiang, Jinping Peng, Xinglong Gong, Zhong Zhang, Resistance to time-dependent deformation of polystyrene/carbon nanotube composites under cyclic tension, Composites: Part A. 43 (2012) 1561–1568.
DOI: 10.1016/j.compositesa.2012.04.011
Google Scholar
[24]
T. Chudoba, F. Richter, Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results, Surf. Coat. Technol. 148 (2001) 191–198.
DOI: 10.1016/s0257-8972(01)01340-8
Google Scholar