[1]
D. Mareci, N. Cimpoesu, M.I. Popa, Electrochemical and SEM characterization of NiTi alloy coated with chitosan by PLD technique, Materials and Corrosion. 63 (2012) 176-180.
DOI: 10.1002/maco.201206501
Google Scholar
[2]
M. Natsume, Y. Hayashi, H. Akebono, M. Kato, A. Suget, Fatigue properties and crack propagation behavior of stainless cast steel for turbine runner of hydraulic power generation, Procedia Engineering. 2 (2010) 1273-1281.
DOI: 10.1016/j.proeng.2010.03.138
Google Scholar
[3]
H. P. Neopane, O.G. Dahlhaug, M. Cervantes, Sediment erosion in hydraulic turbines, Global Journal of Researches in Engineering Mechanical and Mechanics Engineering. 11, 6 (2011).
Google Scholar
[4]
J. Suchánek, V. Kuklík, E. Zdravecká, Influence of microstructure on erosion resistance of steels, Wear. 267 (2009) 2092–(2099).
DOI: 10.1016/j.wear.2009.08.004
Google Scholar
[5]
E. A. Levashov, A. G. Merzhanov, D. V. Shtansky, Advanced Technologies, materials and coatings developed in scientific-Educational Center of SHS, Galvanotechnik, 2009, pp.1-13.
Google Scholar
[6]
N. Radek, K. Bartkowiak, Laser treatment of electro-spark coatings deposited in the carbon steel substrate with using nanostructured WC-Cu electrodes, Physics Procedia. 39 (2012) 295-301.
DOI: 10.1016/j.phpro.2012.10.041
Google Scholar
[7]
Jian-sheng Wang, Hui-min Meng, Hong-ying Yu, Zi-shuan Fan, Dong-bai, Characterization and wear behavior of WC-0. 8Co coating on cast steel rolls by electro-spark deposition, International Journal of Minerals, Metallurgy and Materials. 16, 6 (2009).
Google Scholar
[8]
Z. Chen, Y. Zhou, Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization, Surface & Coatings Technology. 201 (2006) 1503–1510.
DOI: 10.1016/j.surfcoat.2006.02.015
Google Scholar
[9]
M.C. Perju, D.G. Găluşcă, C. Nejneru, M. Agop, Thin layers: Electrod spark deposition (Straturi subţiri: descărcări în impuls), Ars Longa Publishing, Iaşi, (2010).
Google Scholar
[10]
L.S. Dong, X. Xiong, Microstructure and properties of TiC coating by vibrating electrospark deposition, Key Engineering Materials. (2008) 373-374.
DOI: 10.4028/www.scientific.net/kem.373-374.180
Google Scholar
[11]
S. Durdu, S. Levent Aktuğ, K. Korkmaz, Characterization and mechanical properties of the duplex coatings produced on steel by electro-spark deposition and micro-arc oxidation, Surface and Coatings Technology. 236 (2013) 303-308.
DOI: 10.1016/j.surfcoat.2013.10.004
Google Scholar
[12]
S. Frangini, A. Masci, A study on the effect of a dynamic contact force control for improving electrospark coating properties, Surface & Coatings Technology. 204 (2010) 2613–2623.
DOI: 10.1016/j.surfcoat.2010.02.006
Google Scholar
[13]
J. Gould, Application of Electro-Spark Deposition as a Joining Technology, Welding Journal. 90 (2011) 191-197.
Google Scholar
[14]
P. Luoa, S. Donga, A. Yanglib, S. Sunc, Z. Zhengb, H. Wangb, Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu-Cr-Zr alloy electrodes, Journal of Asian Ceramic Societies. 3 (2015) 103–107.
DOI: 10.1016/j.jascer.2014.11.005
Google Scholar
[15]
N. Radek, K. Bartkowiak, Laser treatment of Cu-Mo electro-spark deposited coatings, Physics Procedia. 12 (2011) 499-505.
DOI: 10.1016/j.phpro.2011.03.061
Google Scholar
[16]
N. Radek, K. Bartkowiak, Performance properties of electro-spark deposited carbide-ceramic coatings modified by laser beam, Physics Procedia. 5 (2010) 417–423.
DOI: 10.1016/j.phpro.2010.08.163
Google Scholar
[17]
R. Wang, Y. Qian, J. Liu, Interface behavior study of WC92–Co8 coating produced by electrospark deposition, Applied Surface Science. 240 (2005) 42–47.
DOI: 10.1016/j.apsusc.2004.05.299
Google Scholar
[18]
** Instalation Elitron 22, Academy of Sciences, Republic of Moldova, Chişinău, (1992).
Google Scholar