[1]
L. N. Marcincinova, V. and J.N. Marcincin, Application of rapid prototyping technology in intelligent optimization design area, Applied Mechanics and Materials. 404 (2013) 754-757.
DOI: 10.4028/www.scientific.net/amm.404.754
Google Scholar
[2]
L. N. Marcincinova, V. and J.N. Marcincin, Rapid prototyping in developing process with CA systems application, Applied Mechanics and Materials. 464 (2014) 399-405.
DOI: 10.4028/www.scientific.net/amm.464.399
Google Scholar
[3]
L. N. Marcincinova, V. Fecova, J. N. Marcincin, M. Janak, J. Barna, Effective utilization of rapid prototyping technology, AIP Conference Proceedings. 1431 (2012) 834-841.
DOI: 10.1063/1.4707641
Google Scholar
[4]
C. C. Kai, L.K. Fai, L. Chu-Sing, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific Publishing Co., Inc, River Edge, NJ, (2003).
Google Scholar
[5]
M. Vaezi, C. K. Chua, Effects of layer thickness and binder saturation level parameters on 3D printing process, International Journal of Advanced Manufacturing Technology. 53 (2011) 275-284.
DOI: 10.1007/s00170-010-2821-1
Google Scholar
[6]
V. Vijayaraghavan, A. Garg, J. S. L. Lam, B. Panda, S. S. Mahapatra, Process characterisation of 3D-printed FDM components using improved evolutionary computational approach, International Journal of Advanced Manufacturing Technology. 78 (2015).
DOI: 10.1007/s00170-014-6679-5
Google Scholar
[7]
H. Y. Yang, X. P. Chi, S. Yang, J. R. G. Evans, Mechanical strength of extrusion freeformed calcium phosphate filaments, Journal of Materials Science: Materials in Medicine. 21 (2010) 1503-1510.
DOI: 10.1007/s10856-010-4009-5
Google Scholar
[8]
V. Vega, J. Clements, T. Lam, A. Abad, B. Fritz, N. Ula, O.S. Es-Said, The effect of layer orientation on the mechanical properties and microstructure of a polymer, Journal of Materials Engineering and Performance. 20 (2011) 978–988.
DOI: 10.1007/s11665-010-9740-z
Google Scholar
[9]
J. Beniak, P. Križan, M. Matúš, Accuracy of Rapid Prototyped models with using of FDM technology, Applied Mechanics and Materials. 613 (2014) 390-395.
DOI: 10.4028/www.scientific.net/amm.613.390
Google Scholar
[10]
O. A. Mohamed, S. H. Masood, J. L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in Manufacturing. 3, 1 (2015) 42-53.
DOI: 10.1007/s40436-014-0097-7
Google Scholar
[11]
P. Bere, P. Berce , O. Nemes, , Phenomenological fracture model for biaxial fiber reinforced composite, Composites Part B: Engineering International Journal. 43 (2012) 2237–2243.
DOI: 10.1016/j.compositesb.2012.01.073
Google Scholar
[12]
S. Maričić, D. K. Pavičić, M. Perinić, Application of rapid prototyping technology in orofacial defects reconstruction, Medicina Fluminensis. 45, 2 (2009) 148-153.
Google Scholar
[13]
S. Maričić, D.K. Pavičić, M. Perinić, V. Lajnert, The use of technological documentation in vestibuloplasy fixture plate production, Medicina Fluminensis. 47, 3 (2011) 294-298.
Google Scholar
[14]
A. R. T. Perez, D. A. Roberson, R. B. Wicker, Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials, Journal of Failure Analysis and Prevention. 14 (2014) 343–353.
DOI: 10.1007/s11668-014-9803-9
Google Scholar
[15]
ABS M30 material characteristics, available at http: /www. stratasys. com/materials/fdm/abs-m30, accessed: 10. 01. (2015).
Google Scholar