Friction Stir Welding of Composite Materials with Metallic Matrix: A Brief Review

Article Preview

Abstract:

Composite materials with metallic matrix are increasingly require more than traditional materials metallic, being lighter, more reliable and with their superior properties like: rigidity, tensile strength, flexural strength, fatigue strength, modulus of elasticity, hardness, etc. Due to these advantages, above mentioned, this process has largely penetrated industrial environment. Despite these advantages, there are restrictions on their combination through traditional fusion welding methods so that was passed at the solid-state welding processes, respectively at Friction Stir Welding (FSW). Our researches presents in this brief review: some general ideas about composite materials with metallic matrix and Friction Stir Welding process, appearance and benefits, basic information about the process and composite materials welded by this process, shows the current state of the research with respect to behaviour macrostructure, microstructure, microhardness, tensile properties and defects of the welded joint between composite materials with metallic matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-454

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, Z.Y. Ma, Tensile properties and strain-hardening behaviour of friction stir welded SiCp/AA2009 composite joints, Materials Science & Engineering. A608 (2014) 1–10.

DOI: 10.1016/j.msea.2014.04.060

Google Scholar

[2] B. Yahya, Weldability of metal matrix composite plates by friction stir welding at low welding parameters, Materials and technology. 45, 5 (2011) 407–412.

Google Scholar

[3] I. Boromei, L. Ceschini, A. Morri, G. L. Garagnani, Friction stir welding of aluminium based composites reinforced with Al2O3 particles: effects on microstructure and charpy impact energy, Metallurgical Science and Technology. 24, 1 (2006), 12-21.

DOI: 10.1016/j.compscitech.2006.07.029

Google Scholar

[4] A. Suri, An Improved FSW Tool for Joining Commercial Aluminum Plates, Procedia Materials Science. 6 (2014) 1857 – 1864.

DOI: 10.1016/j.mspro.2014.07.216

Google Scholar

[5] F. Cioffi, J. Ibáñez, R. Fernández, G. González-Doncel, The effect of lateral off-set on the tensile strength and fracture of dissimilar friction stir welds, 2024Al alloy and 17%SiC/2124Al composite, Materials and Design. 65 (2015) 438–446.

DOI: 10.1016/j.matdes.2014.09.042

Google Scholar

[6] F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera, G. González-Doncel, Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement, Composites: Part A. 54 (2013) 117–123.

DOI: 10.1016/j.compositesa.2013.07.011

Google Scholar

[7] D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Friction stir welding of SiCp/2009Al composite plate, Materials and Design. 47 (2013) 243–247.

DOI: 10.1016/j.matdes.2012.11.052

Google Scholar

[8] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering R. 50 (2005) 1–78.

Google Scholar

[9] S. Gopalakrishnan, N. Murugan, Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite, Materials and Design. 32 (2011) 462–467.

DOI: 10.1016/j.matdes.2010.05.055

Google Scholar

[10] G. Minak, L. Ceschini, I. Boromei, M. Ponte, Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites, International Journal of Fatigue. 32 (2010) 218–226.

DOI: 10.1016/j.ijfatigue.2009.02.018

Google Scholar

[11] M. Bahrami, K. Dehghani, M.K.B. Givi, A novel approach to develop aluminum matrix nano composite employing friction stir welding technique, Materials and Design. 53 (2014) 217–225.

DOI: 10.1016/j.matdes.2013.07.006

Google Scholar

[12] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/ 10 vol. % Al2O3 composite, Composites Science and Technology. 67 (2007) 605–615.

DOI: 10.1016/j.compscitech.2006.07.029

Google Scholar

[13] K. Kalaiselvan, I. Dinaharan, N. Murugan, Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite, Materials and Design. 55 (2014) 176–182.

DOI: 10.1016/j.matdes.2013.09.067

Google Scholar

[14] H. Uzun, Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite, Materials and Design. 28 (2007) 1440–1446.

DOI: 10.1016/j.matdes.2006.03.023

Google Scholar

[15] P. Cavaliere, G.L. Rossi, R. Di Sante, M. Moretti, Thermoelasticity for the evaluation of fatigue behavior of 7005/Al2O3/10p metal matrix composite sheets joined by FSW, International Journal Fatigue. 30 (2008) 198-206.

DOI: 10.1016/j.ijfatigue.2007.01.021

Google Scholar

[16] H.J. Liu, J.C. Feng, H. Fujii, K. Nogi, Wear characteristics of a WC–Co tool in friction stir welding of AC4AC30 vol%SiCp composite, International Journal of Machine Tools & Manufacture. 45 (2005) 1635–1639.

DOI: 10.1016/j.ijmachtools.2004.11.026

Google Scholar

[17] J.F. Guo , H.C. Chen, C.N. Sun, G. Bi, Z. Sun, J. Wei, Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters, Materials and Design. 56 (2014) 185–192.

DOI: 10.1016/j.matdes.2013.10.082

Google Scholar