[1]
M. Moravej, A. Purnama, M. Fiset, J. Couet, D. Mantovani, Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies, Acta Biomater. 6 (2010) 1843-1851.
DOI: 10.1016/j.actbio.2010.01.008
Google Scholar
[2]
XN. Gu, YF. Zheng, Y. Cheng, SP. Zhong, TF. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials. 30 (2009) 484–498.
DOI: 10.1016/j.biomaterials.2008.10.021
Google Scholar
[3]
B. Liu, Y.F. Zheng, L. Ruan, In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material, Materials Letters. 65 (2011) 540-543.
DOI: 10.1016/j.matlet.2010.10.068
Google Scholar
[4]
M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. Von Schnakenburg, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials. 27 (2006) 4955-4962.
DOI: 10.1016/j.biomaterials.2006.05.029
Google Scholar
[5]
R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga, Tio FO., Short-term effects of biocorrodible iron stents in porcine coronary arteries, J Interv Cardiol. 21 (2008) 15–20.
DOI: 10.1111/j.1540-8183.2007.00319.x
Google Scholar
[6]
H. Hermawan, H. Alamdari, D. Mantovani, D. Dube, Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy, Powder Metall. 51 (2008) 38–45.
DOI: 10.1179/174329008x284868
Google Scholar
[7]
H. Hermawan, D. Dube, D. Mantovani, Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents, J. Biomed. Mater. Res. A 93A (2010) 1–11.
DOI: 10.1002/jbm.a.32224
Google Scholar
[8]
H. Hermawan, M. Moravej, D. Dubé, M. Fiset, D. Mantovani, Degradation behaviour of metallic biomaterials for degradable stents, Adv. Mater. Res. (THERMEC 2006 Supplement). 15–17 (2007) 113–118.
Google Scholar
[9]
M. Rațoi, G. Dascălu, T. Stanciu, S.O. Gurlui, S. Stanciu, B. Istrate, N. Cimpoesu, R. Cimpoesu, Preliminary results of FeMnSi+Si(PLD) alloy degradation, Key Engineering Materials. 638 (2015) 117-122.
DOI: 10.4028/www.scientific.net/kem.638.117
Google Scholar
[10]
M. Peuster, C. Fink, P. Wohlsein, M. Bruegmann, A. Gunther, V. Kaese, et al., Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity., Biomaterials. 24 (2003).
DOI: 10.1016/s0142-9612(02)00352-6
Google Scholar
[11]
M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia. 8 (2012) 3888–3903.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[12]
M. Peuster, V. Kaese, G. Wuensch, P. Wuebbolt, M. Niemeyer, R. Boekenkamp, et al. Dissolution of tungsten coils leads to device failure after trans-catheter embolisation of pathologic vessels, Heart. 85 (2001) 703–704.
DOI: 10.1136/heart.85.6.703a
Google Scholar
[13]
N. Cimpoeşu, S. Stanciu, P. Vizureanu, , R. Cimpoeşu, D.C. Achiţei, I. Ioniţǎ, Obtaining shape memory alloy thin layer using PLD technique, Journal of Mining and Metallurgy, Section B: Metallurgy. 50, ( 2014) 69-76.
DOI: 10.2298/jmmb121206010c
Google Scholar
[14]
G. Bolat, D. Mareci, S. Iacoban, N. Cimpoeşu, C. Munteanu, The estimation of corrosion behavior of NiTi and NiTiNb alloys using Dynamic Electrochemical Impedance Spectroscopy, Journal of Spectroscopy. vol. 2013 (2013) ID 714920.
DOI: 10.1155/2013/714920
Google Scholar
[15]
D. Mareci, N. Cimpoesu, M. I. Popa, Electrochemical and SEM characterization of NiTi alloy coated with chitosan by PLD technique, Materials and Corrosion. 63 (2012) 176-180.
DOI: 10.1002/maco.201206501
Google Scholar