Quantification of Fe-Base Alloy Degradation after Immersion Test

Article Preview

Abstract:

A new FeMnSi metallic alloy is proposed as biodegradable material with applications in medical field. The corrosion behavior in simulated body fluids is evaluated after immersion for 14 days. The metallic biodegradable material surface was analyzed with a SEM (2 and 3D)+EDAX equipment. The effects of the solution on the metallic surface present an area with pitting corrosions, marks around 10 µm in depth, and a different one with new chemical compounds form from biological solution with good stability on the surface. Even if is a new biodegradable material based on iron simmilar results about the surface behavior were obtain by other researchers on different FeMnSi chemical compositions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

566-571

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Moravej, A. Purnama, M. Fiset, J. Couet, D. Mantovani, Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies, Acta Biomater. 6 (2010) 1843-1851.

DOI: 10.1016/j.actbio.2010.01.008

Google Scholar

[2] XN. Gu, YF. Zheng, Y. Cheng, SP. Zhong, TF. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials. 30 (2009) 484–498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[3] B. Liu, Y.F. Zheng, L. Ruan, In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material, Materials Letters. 65 (2011) 540-543.

DOI: 10.1016/j.matlet.2010.10.068

Google Scholar

[4] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. Von Schnakenburg, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials. 27 (2006) 4955-4962.

DOI: 10.1016/j.biomaterials.2006.05.029

Google Scholar

[5] R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga, Tio FO., Short-term effects of biocorrodible iron stents in porcine coronary arteries, J Interv Cardiol. 21 (2008) 15–20.

DOI: 10.1111/j.1540-8183.2007.00319.x

Google Scholar

[6] H. Hermawan, H. Alamdari, D. Mantovani, D. Dube, Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy, Powder Metall. 51 (2008) 38–45.

DOI: 10.1179/174329008x284868

Google Scholar

[7] H. Hermawan, D. Dube, D. Mantovani, Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents, J. Biomed. Mater. Res. A 93A (2010) 1–11.

DOI: 10.1002/jbm.a.32224

Google Scholar

[8] H. Hermawan, M. Moravej, D. Dubé, M. Fiset, D. Mantovani, Degradation behaviour of metallic biomaterials for degradable stents, Adv. Mater. Res. (THERMEC 2006 Supplement). 15–17 (2007) 113–118.

Google Scholar

[9] M. Rațoi, G. Dascălu, T. Stanciu, S.O. Gurlui, S. Stanciu, B. Istrate, N. Cimpoesu, R. Cimpoesu, Preliminary results of FeMnSi+Si(PLD) alloy degradation, Key Engineering Materials. 638 (2015) 117-122.

DOI: 10.4028/www.scientific.net/kem.638.117

Google Scholar

[10] M. Peuster, C. Fink, P. Wohlsein, M. Bruegmann, A. Gunther, V. Kaese, et al., Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity., Biomaterials. 24 (2003).

DOI: 10.1016/s0142-9612(02)00352-6

Google Scholar

[11] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia. 8 (2012) 3888–3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[12] M. Peuster, V. Kaese, G. Wuensch, P. Wuebbolt, M. Niemeyer, R. Boekenkamp, et al. Dissolution of tungsten coils leads to device failure after trans-catheter embolisation of pathologic vessels, Heart. 85 (2001) 703–704.

DOI: 10.1136/heart.85.6.703a

Google Scholar

[13] N. Cimpoeşu, S. Stanciu, P. Vizureanu, , R. Cimpoeşu, D.C. Achiţei, I. Ioniţǎ, Obtaining shape memory alloy thin layer using PLD technique, Journal of Mining and Metallurgy, Section B: Metallurgy. 50, ( 2014) 69-76.

DOI: 10.2298/jmmb121206010c

Google Scholar

[14] G. Bolat, D. Mareci, S. Iacoban, N. Cimpoeşu, C. Munteanu, The estimation of corrosion behavior of NiTi and NiTiNb alloys using Dynamic Electrochemical Impedance Spectroscopy, Journal of Spectroscopy. vol. 2013 (2013) ID 714920.

DOI: 10.1155/2013/714920

Google Scholar

[15] D. Mareci, N. Cimpoesu, M. I. Popa, Electrochemical and SEM characterization of NiTi alloy coated with chitosan by PLD technique, Materials and Corrosion. 63 (2012) 176-180.

DOI: 10.1002/maco.201206501

Google Scholar