[1]
S. S. Cheon, J. H. Choi, D. G. Lee, Development of the composite bumper beam for passenger cars, J Compos Struct. 32 (1995) 491-499.
DOI: 10.1016/0263-8223(95)00078-x
Google Scholar
[2]
S. R. Reid, G. Zhou, Impact behavior of fiber-reinforced composite materials and structures, England: Woodhead Publishing, (2000).
Google Scholar
[3]
A. Reyes , O.S. Hopperstad, O. -G. Lademo, M. Langseth, Modeling of textured aluminum alloys used in a bumper system: Material tests and characterization, Computational Mater. Science. 37 (2006) 246–268.
DOI: 10.1016/j.commatsci.2005.07.001
Google Scholar
[4]
S. S. Cheon, G. L. Dai, K. S. Jeong, Composite side-door impact beam for passenger cars., J. Compos. Struct. 38 (1997) 229–239.
DOI: 10.1016/s0263-8223(97)00058-5
Google Scholar
[5]
S. S. Cheon, T. S. Lim, T. S. Lee, Impact energy absorption of glass fiber hybrid composites., J. Compos. Struct. 46 (1999) 267–278.
DOI: 10.1016/s0263-8223(99)00064-1
Google Scholar
[6]
Z. S. Feng, S. Q. Feng, Research of CA1092 automotive body lightening, J. Automob. TechnolMater. 8–9 (2002) 58-62.
Google Scholar
[7]
A. Jambor, M. Beyer, New cars—new materials, Mater. 18 (1997) 203–209.
Google Scholar
[8]
L. Yuxuan, Automobile body light weighting research based on crash worthiness numerical simulation. Thesis(PhD). China: Shanghai Jiao Tong University, (2003).
Google Scholar
[9]
D. Stoeckel, F. Tinschert, Temperature compensation with thermovariable rate springs in automatic transmissions., SAE technical paper series: SAE, (1991).
DOI: 10.4271/910805
Google Scholar
[10]
R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics., IEEE Trans Electron Pack Manuf. 27 (2004) 164–176.
DOI: 10.1109/tepm.2004.843109
Google Scholar
[11]
R. Neugebauer, A. Bucht, K. Pagel, J. Jung, Numerical simulation of the activation behavior of thermal shape memory alloys, Proc. SPIE (2010) 76450J-J.
DOI: 10.1117/12.847594
Google Scholar
[12]
T. Luchetti, A. Zanella, M. Biasiotto, A. Saccagno, Electrically actuated antiglare rear-view mirror based on a shape memory alloy actuator, J Mater Eng Perform, 18 (2009) 717–24.
DOI: 10.1007/s11665-009-9487-6
Google Scholar
[13]
A. Weber, Smart materials have a bright future, Adv Assembly Mater Trans Appl (2010).
Google Scholar
[14]
AL. Browne, PW. Alexander, N. Mankame, P. Usoro, NL. Johnson, J. Aase, et al., SMA heat engines: advancing from a scientific curiosity to a practical reality. In: Smart materials, structures and NDT in Aerospace. Montreal, Quebec, Canada: CANSMART CINDE IZFP; (2011).
Google Scholar
[15]
R. Gehm, Smart materials spur additional design possibilities, Automotive engineering international, SAE, 2007, p.46–7.
Google Scholar
[16]
A. Bellini, M. Colli, E. Dragoni, Mechatronic design of a shape memory alloy actuator for automotive tumble flaps: a case study, IEEE Trans Industr Electron. 56 (2009) 2644–56.
DOI: 10.1109/tie.2009.2019773
Google Scholar
[17]
J. Strittmatter, P. Gümpel, H. Zhigang, Long-time stability of shape memory actuators for pedestrian safety system, J Achiev Mater Manuf Eng. 34 (2009) 23–30.
Google Scholar
[18]
EA. Williams, G. Shaw, M. Elahinia, Control of an automotive shape memory alloy mirror actuator, Mechatronics. 20 (2010) 527–34.
DOI: 10.1016/j.mechatronics.2010.04.002
Google Scholar
[19]
R. Zychowicz, Exterior view mirror for a motor vehicle, US Patents 5166832, Britax (GECO) SA, 1992, p.5.
Google Scholar
[20]
M. Leary, S. Huang, T. Ataalla, A. Baxter, A. Subic, Design of shape memory alloy actuators for direct power by an automotive battery, Materials and Design. (2013) 460–466.
DOI: 10.1016/j.matdes.2012.07.002
Google Scholar
[21]
N. Cimpoeşu, S. Stanciu, M. Meyer, I. Ioniţă, R. Hanu Cimpoeşu, Effect of stress on damping capacity of a shape memory alloy CuZnAl, Journal of Optoelectronics and Advanced Materials. 12 (2010) 386-391.
Google Scholar
[22]
V. -P. Paun, N. Cimpoesu, R. Hanu Cimpoesu, G. V. Munceleanu, N. Forna, M. Agop, On the Energy Dissipation Capacity and the Shape Memory. A Comparative Study between Polymer Composites and Alloys, Materiale Plastice. 47 (2010) 158-163.
Google Scholar
[23]
M. -A. Paun, R. Cimpoesu Hanu, N. Cimpoesu, M. Agop, C. Baciu, S. Stratulat, C. Nejneru, Internal friction phenomena at polymeric and metallic shape memory materials. Experimental and theoretical results, Materiale Plastice. 47 (2010) 209-214.
Google Scholar
[24]
N. Cimpoesu, M. Axinte, R. Cimpoesu Hanu, C. Nejneru, D. C. Achitei, S. Stanciu, Behavior simulation of a copper based shape memory alloy under an external solicitation, Journal of Optoelectronics and Advanced Materials. 12 (2010) 1772-1776.
Google Scholar
[25]
N. Cimpoeșu, A. Ursanu, S. Stanciu, R. Cimpoeșu, B. Constantin, C. Paraschiv, S.O. Gurlui, Preliminary Results of Copper Based Shape Memory Alloys Analysis used for MEMS Applications, Applied Mechanics and Materials. 371 (2013) 368-372.
DOI: 10.4028/www.scientific.net/amm.371.368
Google Scholar
[26]
N. Cimpoeşu, S. Stanciu, P. Vizureanu, R. Cimpoeşu, C. D. Achiţei, I. Ioniţǎ, Obtaining shape memory alloy thin layer using PLD technique, Journal of Mining and Metallurgy, Section B: Metallurgy. 50 (2014) 69-76.
DOI: 10.2298/jmmb121206010c
Google Scholar