Variation in Transformation Temperature and Shape Memory Effect in Cu-Al-Be Shape Memory Alloys with the Effect of Quaternary Elements

Article Preview

Abstract:

Cu-Al-Be Ternary alloys are prepared by ingot metallurgy route, which exhibits parent phase or Austenite phase at high temperature and Martensite phase at low temperature and also exhibits shape memory effect upon quenching to lower temperature. The Cu-Al-Be SMA was in the range of 10-12wt% of Al and 0.4-0.5 wt% of Be is chosen for present study and different amount of quaternary element is added to the ternary alloy. The variation in shape memory effect, transformation temperature and microstructure is studied by using bend test, differential scanning calorimeter and Optical microscope.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

246-251

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Prashantha. S, Mallikarjuan.U. S, Shashidhara S.M. Effect of SME and transformation temperature on Cu-Al-Be SMA, Proceedia Materials Science 5 (2014) 567.

Google Scholar

[2] Y. Sutou, T. Omori, J.J. Wang, R. Kainuma, K. Ishida, Mater. Sci. Eng. A 378 (2004).

Google Scholar

[3] S.M. Chentouf, M. Bouabdallah, H. Cheniti, A. Eberhardt, E. Patoor, A. Sari, Materials characterization 61(2013)1187-1193.

DOI: 10.1016/j.matchar.2010.07.009

Google Scholar

[4] S. Montecinos, A. Cuniberti, M.L. Castro, R. Boeri, Phase transformations during continuous cooling of polycrystalline β-CuAlBe alloys, Journal of Alloys and Compounds 467 (2012) 278–283.

DOI: 10.1016/j.jallcom.2007.12.062

Google Scholar

[5] E.A. Williams, G. Shaw, and M. Elahinia, Control of an Automotive Shape Memory Alloy Mirror Actuator, Mechatronics, (2010).

DOI: 10.1016/j.mechatronics.2010.04.002

Google Scholar

[6] D. Vojtech, M. Voderova, J. Kubasek, P. Novak, P. S eda, A. Michalcova, J. Fojt, J. Hanus, and O. Mestek, Effects of Short-Time Heat Treatment and Subsequent Chemical Surface Treatment on the Mechanical Properties, Low-Cycle Fatigue Behavior and Corrosion Resistance of a Ni-Ti (50. 9 at. % Ni) Biomedical Alloy Wire Used for the Manufacture of Stents, Mater, Sci. Eng. A, (2011).

DOI: 10.1016/j.msea.2010.10.043

Google Scholar

[7] Y. Zhu and G. Dui, Influence of Magnetization Rotation on Martensite Reorientation in Magnetic Shape Memory Alloy, Acta Mech. Solida Sin. (2011).

DOI: 10.1016/s0894-9166(10)60002-x

Google Scholar

[8] Q.Y. Wang, Y.F. Zheng, Y. Liu, Microstructure, martensitic transformation and superelasticity of Ti49. 6Ni45. 1Cu5Cr0. 3 shape memory alloy, Materials Letters, 65, (2011).

DOI: 10.1016/j.matlet.2010.09.036

Google Scholar

[9] Victor Hugo C. de Albuquerque, Tadeu Antonio de A. Melo, Rodinei M. Gomes, Severino Jackson G. de Lima, Joao Manuel R.S. Tavares, Grain size and temperature influence on the toughness of a Cu-Al-Be shape memory alloy, Materials Science and Engineering A 528 (2012).

DOI: 10.1016/j.msea.2010.09.034

Google Scholar

[10] S. Montecinos, A. Cuniberti, R. Romero, Effect of grain size on the stress–temperature relationship in a β CuAlBe shape memory alloy, Intermetallics, 19, (2011).

DOI: 10.1016/j.intermet.2010.09.002

Google Scholar

[11] Feng Chen, Bing Tian, Yuxiang Tong, Yufeng Zheng , Transformation behavior and shape memory effect of CoAl alloy, 2009 Inter. J. Mod Phys B 23. 1931 (2009).

DOI: 10.1142/s0217979209061858

Google Scholar

[12] U.S. Mallik, V. Sampath. Effect of composition and ageing on damping characteristics of Cu–Al–Mn shape memory alloys Materials Science and Engineering A 478 (2008) 48–55.

DOI: 10.1016/j.msea.2007.05.073

Google Scholar