[1]
D. W. Schwach, Y.B. Guo, A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue, Int.J. Fatigue. 28 (2006) 1838-1844.
DOI: 10.1016/j.ijfatigue.2005.12.002
Google Scholar
[2]
W. Grzesik, K. Żak, Modification of surface finish produced by hard turning using superfinishing and burnishing operations, J. Mater. Process. Tech. 212 (2012) 315-322.
DOI: 10.1016/j.jmatprotec.2011.09.017
Google Scholar
[3]
D. Ulutan, B.E. Alaca, I. Lazoglu, Analytical modelling of residual stresses in machining, Mater. Process. Tech. 183 (2007) 77-87.
DOI: 10.1016/j.jmatprotec.2006.09.032
Google Scholar
[4]
H. K Tönshoff, C. Arendt, R.B. Amor, Cutting of hardened steel, CIRP Ann. Manuf. Techn. 49, (2000) 547-566.
DOI: 10.1016/s0007-8506(07)63455-6
Google Scholar
[5]
R.S. Pawade, S. S. Joshi, P.K. Brahmankar, Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, Int. J. Mach. Tool. Manu. 48 (2008) 15-28.
DOI: 10.1016/j.ijmachtools.2007.08.004
Google Scholar
[6]
J. Kundrák, A.G. Mamalis, K. Gyani, V. Bana, Surface layer microhardness changes with high-speed turning of hardened steels, Int.J. Adv. Manuf. 53 (2011) 105-112.
DOI: 10.1007/s00170-010-2840-y
Google Scholar
[7]
D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718, Int.J. Adv. Manuf. 59 (2012) 483-489.
DOI: 10.1007/s00170-011-3529-6
Google Scholar
[8]
G. Krolczyk, P. Nieslony, S. Legutko, Microhardness and Surface Integrity in turning process of duplex stainless steel (DSS) for different cutting conditions, J. Mater. Eng. Perform. 23 (2014) 859-866.
DOI: 10.1007/s11665-013-0832-4
Google Scholar
[9]
A. Ginting, M. Nouari, Surface integrity of dry machined titanium alloys, Int. J. Mach. Tool. Manu. 49 (2009) 325-332.
DOI: 10.1016/j.ijmachtools.2008.10.011
Google Scholar
[10]
W. Jiang, A. S, More, W.D. Brown, A. P Malshe, A cBN-TiN composite coating for carbide inserts: Coating characterization and its applications for finish hard turning, surf. Coat. Tech. 201 (2006) 2443-2449.
DOI: 10.1016/j.surfcoat.2006.04.026
Google Scholar
[11]
M. Dogra, V.S. Sharma, A. Sachdeva, N.M. Suri, J.S. Dureja, Tool wear, chip formation and workpiece surface issues in CBN hard turning: A review, Int.J. Precis. Eng. Man. 11 (2010) 341-358.
DOI: 10.1007/s12541-010-0040-1
Google Scholar
[12]
J. Grum, M. Kisin, Influence of microstructure on surface integrity in turning—part I: the influence of the size of the soft phase in a microstructure on surface-roughness formation, International, Int. J. Mach. Tool. Manu. 43 (2003) 1535-1543.
DOI: 10.1016/s0890-6955(03)00199-8
Google Scholar
[13]
R.T. Coelho, L.R. Silva, A. Braghini, A. A Bezerra, Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718™ at high cutting speeds, J. Mater. Process. Tech. 148 (2004) 147-153.
DOI: 10.1016/j.jmatprotec.2004.02.001
Google Scholar
[14]
H. Ding, Y.C. Shin, Multi-physics modeling and simulations of surface microstructure alteration in hard turning, J. Mater. Process. Tech. 213 (2013) 877-886.
DOI: 10.1016/j.jmatprotec.2012.12.016
Google Scholar
[15]
S. Kannan, H.A. Kishawy, Tribological aspects of machining aluminium metal matrix composites, J. Mater. Process. Tech. 198 (2008) 399-406.
DOI: 10.1016/j.jmatprotec.2007.07.021
Google Scholar
[16]
E.O. Ezugwu, J. Bonney, R.B. Da Silva, O. Cakir, Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies, Int. J. Mach. Tool. Manu. 47 (2007) 884-891.
DOI: 10.1016/j.ijmachtools.2006.08.005
Google Scholar
[17]
J.C. Outeiro, A.M. Dias, I.S. Jawahir, On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations, CIRP Ann. Manuf. Techn. 55 (2006) 111-116.
DOI: 10.1016/s0007-8506(07)60378-3
Google Scholar
[18]
A. Javidi, U. Rieger, W. Eichlseder, The effect of machining on the surface integrity and fatigue life, Int.J. Fatigue. 30 (2008) 2050-(2055).
DOI: 10.1016/j.ijfatigue.2008.01.005
Google Scholar
[19]
C.H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V, J. Mater. Process. Tech. 166 (2005) 188-192.
DOI: 10.1016/j.jmatprotec.2004.08.012
Google Scholar
[20]
A. Devillez, G. Le Coz, S. Dominiak, D. Dudzinski, Dry machining of Inconel 718, workpiece surface integrity, J. Mater. Process. Tech. 211 (2011) 1590-1598.
DOI: 10.1016/j.jmatprotec.2011.04.011
Google Scholar
[21]
C.J. Pretorius, S.L. Soo, A.L. Mantle, Tool wear behavior and work piece surface integrity when turning Ti-6Al-2Sn-4Zr-6Mo with PCD tooling, CIRP Ann-Manuf. Techn. (2015).
DOI: 10.1016/j.cirp.2015.04.058
Google Scholar
[22]
A.R.C. Sharman, J.I. Hughes, K. Ridgway, An analysis of the residual stresses generated in Inconel 718 when turning, J. Mater. Process. Tech. 173 (2006) 359–367.
DOI: 10.1016/j.jmatprotec.2005.12.007
Google Scholar
[23]
G.H. Senussi, Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304-Austenitic Stainless Steel, World. Acad. Sci. Eng. Technol, 1 (2007) 121-126.
Google Scholar
[24]
D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, Machinability investigation of Inconel 718 in high-speed turning, Int.J. Adv. Manuf. 45 (2009) 421-429.
DOI: 10.1007/s00170-009-1987-x
Google Scholar
[25]
A. Ebrahimi, M.M. Moshksar, Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology, J. Mater. Process. Tech. 209 (2009) 910-92.
DOI: 10.1016/j.jmatprotec.2008.02.067
Google Scholar