A Review of Micro Hardness Measurement in Turning Operation

Article Preview

Abstract:

Surface integrity estimation is used to enhance the functional behavior of the machined component. Enhancement of surface integrity in a turning operation by one of the reliable factor is micro hardness. Micro hardness measurement used to measure the degree of work hardening, sub surface alteration, functional attribute and analyzes the difference between machining affected zone and bulk material. The objective of this present work is an effort to review some of the importance of micro hardness measurement done in turning operation. In conclusion a summary of the importance of micro hardness measurement is outlined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-278

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. W. Schwach, Y.B. Guo, A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue, Int.J. Fatigue. 28 (2006) 1838-1844.

DOI: 10.1016/j.ijfatigue.2005.12.002

Google Scholar

[2] W. Grzesik, K. Żak, Modification of surface finish produced by hard turning using superfinishing and burnishing operations, J. Mater. Process. Tech. 212 (2012) 315-322.

DOI: 10.1016/j.jmatprotec.2011.09.017

Google Scholar

[3] D. Ulutan, B.E. Alaca, I. Lazoglu, Analytical modelling of residual stresses in machining, Mater. Process. Tech. 183 (2007) 77-87.

DOI: 10.1016/j.jmatprotec.2006.09.032

Google Scholar

[4] H. K Tönshoff, C. Arendt, R.B. Amor, Cutting of hardened steel, CIRP Ann. Manuf. Techn. 49, (2000) 547-566.

DOI: 10.1016/s0007-8506(07)63455-6

Google Scholar

[5] R.S. Pawade, S. S. Joshi, P.K. Brahmankar, Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, Int. J. Mach. Tool. Manu. 48 (2008) 15-28.

DOI: 10.1016/j.ijmachtools.2007.08.004

Google Scholar

[6] J. Kundrák, A.G. Mamalis, K. Gyani, V. Bana, Surface layer microhardness changes with high-speed turning of hardened steels, Int.J. Adv. Manuf. 53 (2011) 105-112.

DOI: 10.1007/s00170-010-2840-y

Google Scholar

[7] D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718, Int.J. Adv. Manuf. 59 (2012) 483-489.

DOI: 10.1007/s00170-011-3529-6

Google Scholar

[8] G. Krolczyk, P. Nieslony, S. Legutko, Microhardness and Surface Integrity in turning process of duplex stainless steel (DSS) for different cutting conditions, J. Mater. Eng. Perform. 23 (2014) 859-866.

DOI: 10.1007/s11665-013-0832-4

Google Scholar

[9] A. Ginting, M. Nouari, Surface integrity of dry machined titanium alloys, Int. J. Mach. Tool. Manu. 49 (2009) 325-332.

DOI: 10.1016/j.ijmachtools.2008.10.011

Google Scholar

[10] W. Jiang, A. S, More, W.D. Brown, A. P Malshe, A cBN-TiN composite coating for carbide inserts: Coating characterization and its applications for finish hard turning, surf. Coat. Tech. 201 (2006) 2443-2449.

DOI: 10.1016/j.surfcoat.2006.04.026

Google Scholar

[11] M. Dogra, V.S. Sharma, A. Sachdeva, N.M. Suri, J.S. Dureja, Tool wear, chip formation and workpiece surface issues in CBN hard turning: A review, Int.J. Precis. Eng. Man. 11 (2010) 341-358.

DOI: 10.1007/s12541-010-0040-1

Google Scholar

[12] J. Grum, M. Kisin, Influence of microstructure on surface integrity in turning—part I: the influence of the size of the soft phase in a microstructure on surface-roughness formation, International, Int. J. Mach. Tool. Manu. 43 (2003) 1535-1543.

DOI: 10.1016/s0890-6955(03)00199-8

Google Scholar

[13] R.T. Coelho, L.R. Silva, A. Braghini, A. A Bezerra, Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718™ at high cutting speeds, J. Mater. Process. Tech. 148 (2004) 147-153.

DOI: 10.1016/j.jmatprotec.2004.02.001

Google Scholar

[14] H. Ding, Y.C. Shin, Multi-physics modeling and simulations of surface microstructure alteration in hard turning, J. Mater. Process. Tech. 213 (2013) 877-886.

DOI: 10.1016/j.jmatprotec.2012.12.016

Google Scholar

[15] S. Kannan, H.A. Kishawy, Tribological aspects of machining aluminium metal matrix composites, J. Mater. Process. Tech. 198 (2008) 399-406.

DOI: 10.1016/j.jmatprotec.2007.07.021

Google Scholar

[16] E.O. Ezugwu, J. Bonney, R.B. Da Silva, O. Cakir, Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies, Int. J. Mach. Tool. Manu. 47 (2007) 884-891.

DOI: 10.1016/j.ijmachtools.2006.08.005

Google Scholar

[17] J.C. Outeiro, A.M. Dias, I.S. Jawahir, On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations, CIRP Ann. Manuf. Techn. 55 (2006) 111-116.

DOI: 10.1016/s0007-8506(07)60378-3

Google Scholar

[18] A. Javidi, U. Rieger, W. Eichlseder, The effect of machining on the surface integrity and fatigue life, Int.J. Fatigue. 30 (2008) 2050-(2055).

DOI: 10.1016/j.ijfatigue.2008.01.005

Google Scholar

[19] C.H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V, J. Mater. Process. Tech. 166 (2005) 188-192.

DOI: 10.1016/j.jmatprotec.2004.08.012

Google Scholar

[20] A. Devillez, G. Le Coz, S. Dominiak, D. Dudzinski, Dry machining of Inconel 718, workpiece surface integrity, J. Mater. Process. Tech. 211 (2011) 1590-1598.

DOI: 10.1016/j.jmatprotec.2011.04.011

Google Scholar

[21] C.J. Pretorius, S.L. Soo, A.L. Mantle, Tool wear behavior and work piece surface integrity when turning Ti-6Al-2Sn-4Zr-6Mo with PCD tooling, CIRP Ann-Manuf. Techn. (2015).

DOI: 10.1016/j.cirp.2015.04.058

Google Scholar

[22] A.R.C. Sharman, J.I. Hughes, K. Ridgway, An analysis of the residual stresses generated in Inconel 718 when turning, J. Mater. Process. Tech. 173 (2006) 359–367.

DOI: 10.1016/j.jmatprotec.2005.12.007

Google Scholar

[23] G.H. Senussi, Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304-Austenitic Stainless Steel, World. Acad. Sci. Eng. Technol, 1 (2007) 121-126.

Google Scholar

[24] D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, Machinability investigation of Inconel 718 in high-speed turning, Int.J. Adv. Manuf. 45 (2009) 421-429.

DOI: 10.1007/s00170-009-1987-x

Google Scholar

[25] A. Ebrahimi, M.M. Moshksar, Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology, J. Mater. Process. Tech. 209 (2009) 910-92.

DOI: 10.1016/j.jmatprotec.2008.02.067

Google Scholar