Review of Composite Machining and Related Optimization Techniques

Article Preview

Abstract:

This paper provides an inclusive review of literature, mostly from the past decade, on optimization techniques of composite materials machining, both conventional and non-conventional process. Composite materials are continually replacing conventional materials due to their excellent corrosion resistance, higher strength to weight ratio, but the machining of composites is a challenging process. Experimental trials notwithstanding, researchers have also used various optimization techniques such as Taguchi method, Genetic Algorithm, Simulated Algorithm, Response Surface Method, and Fuzzy Logic with ANOVA etc., to identify the optimal parameters for the machining processes. Also predictive modeling techniques such as Artificial Neural Networks and Finite Element Methods have also been employed as an optimization tools for studying the composite machining process. It was found that Taguchi method is the most preferred technique in the optimization studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-403

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Arindham Goshal, Alakeshm Manna, Response surface method based optimization of ytterbium fiber laser parameter during machining of Al/Al2O3-MMC, Opt Laser Technol 46 (2013).

DOI: 10.1016/j.optlastec.2012.04.030

Google Scholar

[2] Debaprasanna Puhan, Siba Sankar Mahapatra, Jambeswar Sahu, Layatitdev Das, A hybrid approach for multi-response optimization of non-conventional machining on AlSiCp MMC, Measurement 46 (2013) 3581-3592.

DOI: 10.1016/j.measurement.2013.06.007

Google Scholar

[3] Subramanian Gopalakannan and Thiagarajan Senthilvelan, Optimization of machining parameters for EDM operations based on central composite design and desirability approach, J Mech Sci Technol 28 (2014) 1045-1053.

DOI: 10.1007/s12206-013-1180-x

Google Scholar

[4] S. Assarzadeh, M. Ghoreishi, Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co), Procedia CIRP 6 (2013) 463-468.

DOI: 10.1016/j.procir.2013.03.099

Google Scholar

[5] Gaurav Chaudharya, Manoj Kumar, Santosh Verma, Anupam Srivastav, Optimization of drilling parameters of hybrid metal matrixcomposites using response surface methodology, Procedia Materials Science 6 (2014) 229-237.

DOI: 10.1016/j.mspro.2014.07.028

Google Scholar

[6] Ravinder Kumar, Santram Chauhan, Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 Hybrid Composites by using surface methodology response (RSM) and artificial neural networking (ANN), Measurement (2015).

DOI: 10.1016/j.measurement.2015.01.003

Google Scholar

[7] P. Suresh, K. Marimuthu, S. Ranganathan, Modelling and Analysis of Process Parameters on Turning of Aluminium Hybrid Composites, Australian Journal of Basic and Applied Sciences, 7(9): 341-353, 2013 ISSN 1991-8178.

Google Scholar

[8] V.K. Saini, Zahid A. Khan & Arshad Noor Siddiquee, Optimization of wire electric discharge machining of composite material (Al 6061/SiCp) using taguchi method, IJMPE ( 2013) 2315-4489.

Google Scholar

[9] Probir Sahaa, Debashis Tarafdarb, Surjya K. Palb, Partha Sahab, Ashok K. Srivastava, Karabi Das, Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique, Appl Soft Comput 13 (2013).

DOI: 10.1016/j.asoc.2012.11.008

Google Scholar

[10] Azlan Mohd Zain, Habibollah Haron, Safian Sharif, Prediction of surface roughness in the end milling machining using Artificial Neural Network, Expert Syst Appl 37 (2010).

DOI: 10.1016/j.eswa.2009.07.033

Google Scholar

[11] Pragya Shandilyaa, P.K. Jain, N.K. Jain, Parametric optimization during wire electrical discharge machining using response surface methodology, Procedia Engineering 38 (2012).

DOI: 10.1016/j.proeng.2012.06.283

Google Scholar

[12] K. Venkatesan, R. Ramanujam, J. Joel, P. Jeyapandiarajan, M. Vignesh, Darsh Jiten Tolia, R. Venkata Krishna, Study of Cutting force and Surface Roughness in machining of Al alloy Hybrid Composite and Optimized using Response Surface Methodology, Procedia Engineering 97( 2014 ).

DOI: 10.1016/j.proeng.2014.12.297

Google Scholar

[13] Vijayan Krishnaraj, A. Prabukarthi, Arun Ramanathan, N. Elanghovan, M. Senthil Kumar, Redouane Zitoune, J.P. Davim, Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates, Composites: Part B 43 (2012).

DOI: 10.1016/j.compositesb.2012.01.007

Google Scholar

[14] Rajesh Kumar Bhushan, Sudhir Kumar, and S. Das, GA Approach for Optimization of Surface Roughness Parameters in Machining of Al Alloy SiC Particle Composite, ASM International, J Mater Eng Perform, (2012)1676-1686.

DOI: 10.1007/s11665-011-0066-2

Google Scholar

[15] Reddy Sreenivasulu, Optimization of Surface Roughness and De-lamination Damage of GFRP Composite Material in End Milling using Taguchi Design Method and Artificial Neural Network, Procedia Engineering 64 ( 2013 ) 785-794.

DOI: 10.1016/j.proeng.2013.09.154

Google Scholar

[16] Şener Karabulut, Optimization of surface roughness and cutting force during AA7039/Al2O3 Metal matrix composites milling using neural networks and Taguchi method, Measurement (2015).

DOI: 10.1016/j.measurement.2015.01.027

Google Scholar

[17] P. Suresh, K. Marimuthu and S. Ranganathan, Predictive Model for Surface Roughness using ANN and RSM Approach, International review on Modelling and simulation, Vol 6, No. 3, 1068-1073, (2013).

Google Scholar

[18] Abhishek Singh, Pradeep Kumar, Inderdeep Singh, Process Optimization for Electro-Discharge Drilling of Metal Matrix Composites, Procedia Engineering 64 ( 2013 ) 1157-1165.

DOI: 10.1016/j.proeng.2013.09.194

Google Scholar

[19] T. Rajmohan, K. Palanikumar, S. Prakash, Grey-fuzzy algorithm to optimize machining parameters in drilling of hybrid metal matrix composites, Composites: Part B 50 (2013) 297-308.

DOI: 10.1016/j.compositesb.2013.02.030

Google Scholar

[20] Reddy Sreenivasulu, Optimization of Machining Parameters during End Milling of GFRP Composites by Desirability Function Analysis using Taguchi Technique, All India Manufacturing Technology, Design and Research Conference(2014).

Google Scholar

[21] M.P. Jenarthanan, R. Jeyapaul, Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method, Int J Eng Sci (2013) 23-36.

DOI: 10.4314/ijest.v5i4.3

Google Scholar

[22] P. Suresh, K. Marimuthu and S. Ranganathan, Determination of Optimum Process Parameters in Turning of Aluminium Hybrid Composites, International Review of Mechanical Engineering, Vol 7, No. 1. 115-125, (2013).

Google Scholar

[23] T. Rajmohan, K. Palanikumar, S. Ranganathan, Evaluation of mechanical and wear properties of hybrid aluminium matrix composites, Trans. Nonferrous Met. Soc. China 23(2013) 2509−2517.

DOI: 10.1016/s1003-6326(13)62762-4

Google Scholar

[24] K. Palanikumar, Experimental investigation and optimization in drilling of GFRP composites, Measurement 44 (2011) 2138-2148.

DOI: 10.1016/j.measurement.2011.07.023

Google Scholar

[25] Gopalakannan S, Senthilvelan T and Ranganathan S, Statistical optimization of EDM parameters on machining of aluminum Hybrid Metal Matrix composite by applying Taguchi based Grey analysis, Journal of Scientific & Industrial Research, Vol. 72, June 2013, pp.358-365.

Google Scholar