[1]
Goto H, Amamoto Y. Effect of varying load on wear resistance of carbon steel under unlubricated conditions. Wear 2003; 254: 1256–66.
DOI: 10.1016/s0043-1648(03)00222-9
Google Scholar
[2]
Goto H, Amamoto Y. Improvement of wear resistance for carbon steel under unlubricated sliding and variable loading conditions. Wear 2011; 270: 725–36.
DOI: 10.1016/j.wear.2010.12.010
Google Scholar
[3]
Wirojanupatump S, Shipway PH. A direct comparison of wet and dry abrasion behaviour of mild steel. Wear 1999; 233–235: 655–65.
DOI: 10.1016/s0043-1648(99)00208-2
Google Scholar
[4]
Wirojanupatump S, Shipway PH. Abrasion of mild steel in wet and dry conditions with the rubber and steel wheel abrasion apparatus. Wear 2000; 239: 91–101.
DOI: 10.1016/s0043-1648(00)00310-0
Google Scholar
[5]
Bingley MS, Schnee S. A study of the mechanisms of abrasive wear for ductile metals under wet and dry three-body conditions. Wear 2005; 258: 50–61.
DOI: 10.1016/j.wear.2004.01.022
Google Scholar
[6]
Cao X, Wanjara P, Huang J, Munro C, Nolting A. Hybrid fiber laser-arc welding of thick section high strength low alloy steel. Mater Des 2011; 32: 3399–413.
DOI: 10.1016/j.matdes.2011.02.002
Google Scholar
[7]
Wei S, Lu S. Effects of multiple normalizing processes on the microstructure and mechanical properties of low carbon steel weld metal with and without Nb. Mater Des 2012; 35: 43–54.
DOI: 10.1016/j.matdes.2011.09.065
Google Scholar
[8]
Sha Q, Li D, Huang G, Guan J. Separation occurring during the drop weight tear test of thick-walled X80 pipeline steels. Int J Miner Metall Mater 2013; 20: 741–7.
DOI: 10.1007/s12613-013-0792-6
Google Scholar
[9]
T. Mohandas, G.M. Reddy, M. Naveed, J. Mater. Process. Technol. 94 (1999) 133.
Google Scholar
[10]
Weman, Klas 2003. Welding processes handbook. NewYork: CRC PRESS LLC ISBN 0-8493-1773-8.
Google Scholar
[11]
Gholipour A, Shamanian M, Ashrafizadeh F. Microstructure and wear behavior of stellite 6 cladding on 17–4 PH stainless steel. J Alloys Compd 2011; 509: 4905–9.
DOI: 10.1016/j.jallcom.2010.09.216
Google Scholar
[12]
M Moustafa, M. A Moustafa ,A. A Nofal Carbide formation mechanism during solidification and annealing of 17% Cr-ferritic steelI, , Volume 42, Issue 6, March 2000, Pages 371–379.
DOI: 10.1016/s0167-577x(99)00213-x
Google Scholar
[13]
Raabe, D.; Choi, P. P.; Li, Y. J.; Kostka, A.; Sauvage, X.; Lecouturier, F.; Hono, K.; Kirchheim, R.; Pippan, R.; Embury, D. (2010).
DOI: 10.1557/mrs2010.703
Google Scholar
[14]
Degarmo, E. Paul, (2003), Material and processing Manufacturing (9th ed). Wlley. ISBN 0-471-65653-4.
Google Scholar
[15]
Bhadeshia, Harshad Kumar Dharamshi Hansraj; Honeycombe, Robert William Kerr (2006), Steels: microstructure and properties (3rd ed. ), Butterworth-Heinemann, p.155, ISBN 978-0-7506-8084-4.
Google Scholar
[16]
Abson D J, Dolby R E and Hart P H M H, The role of non-metallic inclusions in ferrite nucleation in carbon steel weld metals, In: Trends in Steels and Consumables for Welding. Proceedings, International Conference, London, 13-16 Nov. 1978. Publ: Abington, Cambridge CB1 6AL; The Welding Institute; 1979. ISBN 0-85300128-6 (Papers), 0-85300132-4 (Discussions). Paper 25, 75-101; session discussion, 609-617.
Google Scholar
[17]
Welding engineering and technology; R.S. Parmar, Khanna publishers, Darya ganj New Delhi - 110002.
Google Scholar
[18]
Meyers Marc A, Chawla Krishan Kumar (1998). MechanicalBehavioursofMaterials. Prentice Hall. ISBN 978-0-13-262817-4.
Google Scholar