[1]
S. Abarbanel, A. Kumar, Compact High-Order Schemes for the Euler Equations, J. Sci. Comp., 3 (1988) 275-288.
DOI: 10.1007/bf01061287
Google Scholar
[2]
M.A.H. Mohamad, S. Basri, B. Basuno, One-dimensional high order compact method for solving Euler's equations, Proc. of the 4th International Meeting of Advances in Thermofluids, Melaka, Malaysia, 2011, pp.950-962.
DOI: 10.1063/1.4704291
Google Scholar
[3]
C.W. Shu, High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD, Int. J. Comp. Fluid Dyn., 17 (2003) 107-118.
DOI: 10.1080/1061856031000104851
Google Scholar
[4]
A. Rezgui, P. Cinnella, A. Lerat, Third-order accurate finite volume schemes for Euler computations on curvilinear meshes, Comp. & Fluids, 30 (2001) 875-901.
DOI: 10.1016/s0045-7930(01)00033-0
Google Scholar
[5]
C.O. Gooch, A. Nejat, K. Michalak, Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations, AIAA J., 47 (2009) 2105-2120.
DOI: 10.2514/1.40585
Google Scholar
[6]
F. Bassi, S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comp. Phys., 138 (1997) 251-285.
DOI: 10.1006/jcph.1997.5454
Google Scholar
[7]
L. Wang, D.J. Mavriplis, Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations, J. Comp. Phys., 225 (2007) 1994-(2015).
DOI: 10.1016/j.jcp.2007.03.002
Google Scholar
[8]
N. Kwatra, S. Jonathan, J.T. Gretarsson, R. Fedkiw, A method for avoiding the acoustic time step restriction in compressible flow, J. Comp. Phys., 228 (2009) 4146-4161.
DOI: 10.1016/j.jcp.2009.02.027
Google Scholar
[9]
A.M. Elfaghi, W. Asrar, A.A. Omar, Higher order compact flowfield dependent variation solution of one-dimensional problems, Eng. App. Comp. Fluid Mech., 4 (2010) 434-440.
DOI: 10.1080/19942060.2010.11015330
Google Scholar
[10]
G. Stipcich, C. Liu, High-order mixed weighted compact and non compact scheme for shock and small length scale interaction, Int. J. Comp. Maths., 90 (2013) 376-407.
DOI: 10.1080/00207160.2012.718336
Google Scholar
[11]
J.D. Anderson Jr., Computational Fluid Dynamics, McGraw-Hill, Inc., New York, (1995).
Google Scholar
[12]
A. Xu, Numerical solutions of quasi-one-dimensional nozzle flows, Proc. of the 23rd International Congress of Theoretical and Applied Mechanics (ICTAM - 2012), Beijing, China, 2012, pp.1-10.
Google Scholar