[1]
C. K. Chua, K. F. Leong, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons, (1998).
Google Scholar
[2]
B. Asiabanpour, B. Khoshnevis, K. Palmer and M. Mojdeh, Advancements in the SIS process, In Proceedings from the 14th SFF Symposium, Austin, Texas, (2003) 25-38.
DOI: 10.1108/13552540310455638
Google Scholar
[3]
B. Khoshnevis, B. Asiabanpour, M. Mojdeh, and K. Palmer, SIS – A New SFF Method Based on Powder Sintering, Rapid Prototyping Journal, 1 (2003) 30-36.
DOI: 10.1108/13552540310455638
Google Scholar
[4]
B. Asiabanpour, K. Palmer and B. Khoshnevis, An experimental study of surface quality and dimensional accuracy for selective inhibition of sintering, Rapid Prototyping Journal, 10 (2004) 181-192.
DOI: 10.1108/13552540410539003
Google Scholar
[5]
B. Khoshnevis and B. Asiabanpour, Selective inhibition of sintering, Rapid Prototyping: Theory and Practice, 8 (2000) 197-220.
DOI: 10.1007/0-387-23291-5_8
Google Scholar
[6]
B. Khoshnevis and B. Asiabanpour, Machine path generation for the SIS process, Robotics and Computer-Integrated Manufacturing, 20 (2004) 167–175.
DOI: 10.1016/j.rcim.2003.10.005
Google Scholar
[7]
B. Asiabanpour, K. Palmer and B. Khoshnevis, Performance factors in the selective inhibition of sintering process, Industrial Engineering Research Conference, Portland, OR, (2003).
Google Scholar
[8]
B. Asiabanpour, R. Cano, L. VanWagner, T. McCormick and F. Wasik, New design for conserving polymer powder for the SIS rapid prototyping process, In Proc. 16th Inter. Solid Freeform Fabrication (SFF) Symposium, (2005) 86-97.
DOI: 10.1108/13552540710750889
Google Scholar
[9]
X. Fangxia, H. Xinbo, C. Shunli, and Q. Xuanhui, Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, Journal of Materials Processing Technology, 213 (2013) 838–843.
DOI: 10.1016/j.jmatprotec.2012.12.014
Google Scholar
[10]
D. L. Bourell, T. J. Watt, D. K. Leigh and B. Fulcher, Performance limitations in polymer laser sintering. Physics Procedia, 56 (2014) 147-156.
DOI: 10.1016/j.phpro.2014.08.157
Google Scholar
[11]
S. Kumar, Selective Laser Sintering/Melting, Advances in Additive Manufacturing and Tooling, 10 (2014) 93-134.
Google Scholar
[12]
I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis and I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics, Applied Surface Science, 336 (2014) 157-162.
DOI: 10.1016/j.apsusc.2014.10.120
Google Scholar
[13]
J. Guo, K. Yanling and D. L. Bourell, Accuracy and mechanical property analysis of LPA12 parts fabricated by laser sintering, Polymer Testing, 42 (2015) 175-180.
DOI: 10.1016/j.polymertesting.2015.01.019
Google Scholar
[14]
J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai and D. Zuo, Simulation of temperature distribution in single metallic powder layer for laser micro-sintering, Computational Materials Science, 53 (2012) 333-339.
DOI: 10.1016/j.commatsci.2011.09.012
Google Scholar
[15]
A. Roberts, C. J. Wang, R. Esterlein, M. Stanford and D. J. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, International Journal of Machine Tools & Manufacture, 49 (2009).
DOI: 10.1016/j.ijmachtools.2009.07.004
Google Scholar
[16]
R. Patil, and Y. Vinod, Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering, International Journal of Machine Tools and Manufacture, 47. 7 (2007) 1069-1080.
DOI: 10.1016/j.ijmachtools.2006.09.025
Google Scholar
[17]
J. E. Mark, Polymer Data Handbook, 3rd Edition, Oxford University Press, (1999).
Google Scholar