[1]
P. Keshavarz, M. Taheri, An improved lumped analysis for transient heat conduction by using the polynomial approximation method, Heat Mass Transfer. 43 (2007) 1151–1156.
DOI: 10.1007/s00231-006-0200-0
Google Scholar
[2]
F. Alhama, A. Campo, The connection between the distributed and lumped models for asymmetric cooling of long slabs by heat convection, Int Comm Heat Mass Transf. 28 (2003) 127–137.
DOI: 10.1016/s0735-1933(01)00220-2
Google Scholar
[3]
R.M. Cotta, M.D. Mikhailov, Heat conduction—lumped analysis integral transform, symbolic computation, Wiley Chichester. (1997).
Google Scholar
[4]
S. G Ramachandran, T.I. P Shih, Biot number analogy for design of experiments in turbine cooling, Journal of Turbomachinery. 137 (2015) 14.
DOI: 10.1115/1.4028327
Google Scholar
[5]
C.R. Regis, R.M. Cotta, J. Su, Improved lumped analysis of transient heat conduction in a nuclear fuel rod, Int Comm Heat Mass Transfer. 27 (2001) 357–366.
DOI: 10.1016/s0735-1933(00)00116-0
Google Scholar
[6]
B. A Souraki, N. Assareh, M. Omidi, Effect of internal heat generation on the applicability of different lumped models with unsteady one dimensional conduction, Heat Transfer Research 45 (2014), 767-793.
DOI: 10.1615/heattransres.2014006552
Google Scholar
[7]
H Sadat, A general lumped model for transient heat conduction in one dimensional geometries, Applied Thermal Engineering. 25 (2005) 567–576.
DOI: 10.1016/j.applthermaleng.2004.06.018
Google Scholar
[8]
Y Jian, F Bai, Q Falcoz, C Xu, Y Wang, Z Wang, Thermal analysis and design of solid energy storage systems using a modified lumped capacitance model, Applied Thermal Engineering. 75 (2015) 213-223.
DOI: 10.1016/j.applthermaleng.2014.10.010
Google Scholar
[9]
J. Su, Improved lumped models for asymmetric cooling of a long slab by heat convection, Int Comm Heat Mass Transf. 28 (2001) 973–98.
DOI: 10.1016/s0735-1933(01)00301-3
Google Scholar