[1]
Abu-Nada E, Al-Hinti. I, Al-Sarkhi. A, Akash. B, Thermodynamic modeling of spark ignition engine: effect of temperature dependent specific heats, International Communications in Heat and Mass Transfer. 33(10): (2006) 1264-1272.
DOI: 10.1016/j.icheatmasstransfer.2006.06.014
Google Scholar
[1]
Abu-Nada E, Al-Hinti. I, Al-Sarkhi. A, Akash, Thermodynamic analysis of spark ignition engine using a gas mixture model for the working fluid, International Journal of Energy Research. 31 (2007) 1031-1046.
DOI: 10.1002/er.1296
Google Scholar
[1]
Abu-Nada E, Al-Hinti. I, Al-Sarkhi. A, Akash, Effect of piston friction on the performance of SI engine: a new thermodynamic approach. ASME Journal of Gas Turbines and Power, International Journal of Energy Research. 130 (2008) 022802-1.
DOI: 10.1115/1.2795777
Google Scholar
[1]
Abu-Nada E, Al-Hinti. I, Al-Sarkhi. A, Akash, Performance of spark ignition engine under effect of friction using gas mixture model, Journal of the Energy Institute. 82 (2009) 197-205.
DOI: 10.1179/014426009x12448189963478
Google Scholar
[5]
Yasin Varol a, Hakan F. Oztop, Mujdat Firat, Ahmet Koca, CFD modeling of heat transfer and fluid flow inside a pent-roof type combustion, International Communications in Heat and Mass Transfer. (2010).
DOI: 10.1016/j.icheatmasstransfer.2010.07.003
Google Scholar
[6]
Kunpeng Qi, Liyan Feng, Xianyin Leng, Baoguo Du, Wuqiang Long, Simulation of quasi-dimensional combustion model for predicting diesel engine performance, Institute of Internal Combustion Engine, Dalian University of Technology, People's Republic of China, Applied Mathematical Modelling. 35 (2011).
DOI: 10.1016/j.apm.2010.07.047
Google Scholar
[7]
He Ma, Hong-Ming Xu, Ji-Hong Wang, Real-time Control Oriented HCCI Engine Cycle-to-cycle Dynamic Modelling, International Journal of Automation and Computing. 8 (2011) 317-325.
DOI: 10.1007/s11633-011-0587-z
Google Scholar
[8]
Roberto Finesso, Ezio Spessa, A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines, Energy Conversion and Management. 79 (2014) 498–510.
DOI: 10.1016/j.enconman.2013.12.045
Google Scholar
[9]
Heywood JB, Internal Combustion Engine Fundamentals, New York, McGraw Hill, (1988).
Google Scholar
[10]
Woschini, A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Paper 670931.
DOI: 10.4271/670931
Google Scholar
[11]
Miyamoto. N, Chikahisa . T, Murayama. T, Sawyer. R, Description and analysis of diesel engine rate of combustion and performance using Weibe's functions, SAE paper 850107. (1985).
DOI: 10.4271/850107
Google Scholar
[12]
Pulkrabek W, Engineering fundamentals of the internal combustion engine. second ed. Pearson Prentice-Hall, Upper Saddle River, New Jersey, USA. (2004).
Google Scholar
[13]
Watson, N, Pilley A. D., and Marzouk M A Combustion Correlation for Diesel Engine Simulation, SAE Paper 800029. (1980).
DOI: 10.4271/800029
Google Scholar
[14]
Sonntag R, Borgnakke C, Van Wylen G, Fundamentals of thermodynamics, 5th ed. Wiley, New York. (1998).
Google Scholar