Optimization of Surface Roughness in Turning Operation Using Firefly Algorithm

Article Preview

Abstract:

Recently, Firefly Algorithm (FA) has become an important technique to solve optimization problems. Various FA variants have been developed to suit various applications. In this paper, FA is used to optimize machining parameters such as % Volume fraction of SiC (V), cutting speed (S), feed rate (F), depth of cut (D) and machining time (T). The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

268-272

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.K. Mittal and K.S. Sangwan: Prioritizing Barriers to Green Manufacturing: Environmental, Social and Economic Perspectives. Variety Management in Manufacturing. (Proceedings of the 47th CIRP Conference on Manufacturing Systems, Procedia CIRP 17, 2014).

DOI: 10.1016/j.procir.2014.01.075

Google Scholar

[2] Y. Yusoff, M.S. Ngadiman & A.M. Zain: Procedia Eng. Vol. 15 (2011), p.3978.

Google Scholar

[3] A.M. Zain, H. Haron & S. Sharif: Int J Comput Integ M, Vol. 24. 6 (2011), p.574.

Google Scholar

[4] P. G. Benardos, & G. C. Vosniakos: Int J Mach Tool Manu, Vol 43. 8 (2003), p.833.

Google Scholar

[5] A.M. Zain, H. Haron & S. Sharif: Review of ANN Technique for Modeling Surface Roughness Performance Measure in Machining Process, (Third Asia International Conference on Modeling & Simulation, IEEE 2009).

DOI: 10.1109/ams.2009.78

Google Scholar

[6] S.B. Raja, N.S. Narayanan & C. V.S. Pramod, A. Ragunathan, S.R. Vinesh, K.V. Krishna: Optimization of Constrained Machining Parameters in Turning Operation Using Firefly Algorithm. Asian Network for Scientific Information, J. Applied Sci. Vol. 12 (2012).

DOI: 10.3923/jas.2012.1038.1042

Google Scholar

[7] A.M. Zain, H. Haron & S. Sharif: Appl Soft Comput, Vol. 11, Issue 8 (2011), p.5350.

Google Scholar

[8] A.M. Deris, A.M. Zain & R. Sallehuddin: Procedia Eng. Vol. 24 (2011), p.308.

Google Scholar

[9] X.S. Yang, in: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008), in press.

Google Scholar

[10] X.S. Yang: Scholarpedia J. Vol. 6 Issue 8 (2011), p.11472.

Google Scholar

[11] X. S. Yang: Int J Bio Inspir Com. Vol. 2, No. 2 (2010), p.78.

Google Scholar

[12] J. Senthilnath, S.N. Omkar and V. Mani: Swarm Evol Comput. Vol. 1 (2011), p.164.

Google Scholar

[13] L.D.S. Coelho, D.L.D.A. Bernert and V.C. Mariani: A Chaotic Firefly Algorithm Applied to Reliability-Redundancy Optimization, (IEEE proceedings international symposium on information technology 2011).

DOI: 10.1109/cec.2011.5949662

Google Scholar

[14] R. Falcon, M. Almeida and A. Nayak: Fault Identification with Binary Adaptive Fireflies in Parallel and Distributed Systems, Evolutionary Computation (CEC), IEEE (2011).

DOI: 10.1109/cec.2011.5949774

Google Scholar

[15] J. Ivanecky and D.H. Ing: Optimal Dispatch of Renewable Energy Sources Including in Virtual Power Plant using the Firefly Algorithm, X International conference of students and young researches , Kremenchuk, 2012).

DOI: 10.1109/elektro.2012.6225637

Google Scholar

[16] N.F. Johari, A.M. Zain, N.H. Mustaffa and A. Udin: Applied Mechanics and Materials. Vol. 421 (2013), p.512.

Google Scholar

[17] K. Palanikumar and Karthikeyan: Mach Sci Technol. Vol. 10: 4 (2006), p.417.

Google Scholar

[18] X.S. Yang, S.S.S. Hosseini and A.H. Gandomi: Appl Soft Comput. Vol. 12 (2012), p.1180.

Google Scholar