Circular Split Ring Meta-Surfaces Variation Study as Surface Wave Suppressor

Article Preview

Abstract:

This work focuses on three different edge variation modified on the same circular split ring (CSR) longest arm of metallo dielectric periodic structure and its corresponding electromagnetic bandgap (EBG) behaviour as an alternative step to suppress surface wave. Three variants of circular split ring were studied to fulfill the requirements: Normal edge, triangular tip and tapered tip. These structures were optimized using Eigenmode Solver (EmS) with Advanced Krylov Subspace (AKS) method for full wave dispersion diagram. Final results shows a stable and good EBG region achieved from this CSR specifically within the 5.9 to 6 GHz region. The normal tip CSR that has a stable and good bandgap exits from 5.9265 GHz to 5.9516 GHz in between mode 5 and 6. While the triangular tip CSR bandgap is from 6.0214 GHz to 6.0378 GHz and tapered tip is from 6.0214 GHz to 6.0378 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-252

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kovács, Peter, Z. Raida, and Z. Lukes. Design and optimization of periodic structures for simultaneous EBG and AMC operation., In Microwave Techniques (COMITE), 2010 15th International Conference on, pp.195-198. IEEE, (2010).

DOI: 10.1109/comite.2010.5481268

Google Scholar

[2] N. Wiwatcharagoses, Metamaterial microstrip transmission line based microwave circuits and sensors, 3548786 Ph.D., Michigan State University, Ann Arbor, (2012).

Google Scholar

[3] Y. Dong and T. Itoh, Metamaterial-based antennas, Proceedings of the IEEE, vol. 100, pp.2271-2285, (2012).

Google Scholar

[4] M. Maassel, A metamaterial-based multiband phase shifter, North Dakota State University, (2014).

Google Scholar

[5] A. Marteau, T. Decoopman, M. -F. Foulon, E. Lheurette, and D. Lippens, Metamaterial-based transmission line: The fin line approach, in Microwave Conference, 2005 European, 2005, p.4 pp.

DOI: 10.1109/eumc.2005.1608885

Google Scholar

[6] B. L. Pham, Metamaterial-inspired and Defected-ground Techniques for High Performance Baluns and Antennas, Univeristy of California, (2014).

Google Scholar

[7] B. Ijaz, Metamaterial-inspired reconfigurable series-fed arrays, (2014).

Google Scholar

[8] T. Chen, S. Li, and H. Sun, Metamaterials application in sensing, Sensors, vol. 12, pp.2742-2765, (2012).

Google Scholar

[9] W. Xu, Metamaterials with Active Circuits, 3563644 Ph.D., Tufts University, Ann Arbor, (2013).

Google Scholar

[10] G. V. Eleftheriades and N. Engheta, Metamaterials: Fundamentals and Applications in the MicrowaveandOpticalRegimes, Proceedings of the IEEE, vol. 99, (2011).

Google Scholar

[11] M. Huang and J. Yang, Microwave sensor using metamaterials, Wave Propagation, pp.13-36, (2011).

Google Scholar

[12] R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, et al., Nested metamaterials for wireless strain sensing, Selected Topics in Quantum Electronics, IEEE Journal of, vol. 16, pp.450-458, (2010).

DOI: 10.1109/jstqe.2009.2033391

Google Scholar

[13] O. Abu Safia, L. Talbi, and K. Hettak, A New Type of Transmission Line-Based Metamaterial Resonator and Its Implementation in Original Applications, Magnetics, IEEE Transactions on, vol. 49, pp.968-973, (2013).

DOI: 10.1109/tmag.2012.2230248

Google Scholar

[14] T. A. Elwi, Novel Antennas based on Innovations in Nano-Scale and Metamaterial Structures, 3490596 Ph.D., University of Arkansas at Little Rock, Ann Arbor, (2011).

Google Scholar

[15] C. Pelletti, R. Arya, A. Rashidi, H. Mosallaei, and R. Mittra, Numerical Techniques for Efficient Analysis of FSSs, EBGs and Metamaterials, in Computational Electromagnetics, R. Mittra, Ed., ed: Springer New York, 2014, pp.393-443.

DOI: 10.1007/978-1-4614-4382-7_11

Google Scholar

[16] L. Wang and J. L. -W. Li, A Novel Metamaterial Microstrip Antenna of Broadband and High-Gain, Proceedings of ISAP2012, vol. 3, p.5, (2012).

Google Scholar

[17] H. R. Khaleel, Novel metamaterial based antennas for flexible wireless systems, 3509695 Ph.D., University of Arkansas at Little Rock, Ann Arbor, (2012).

Google Scholar

[18] N. R. Labadie and S. K. Sharma, A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion, Metamaterials, vol. 4, pp.44-57, (2010).

DOI: 10.1016/j.metmat.2010.04.003

Google Scholar

[19] D. H. Werner, J. A. Bossard, Z. Bayraktar, Z. H. Jiang, M. D. Gregory, and P. L. Werner, Nature Inspired Optimization Techniques for Metamaterial Design, in Numerical Methods for Metamaterial Design, ed: Springer, 2013, pp.97-146.

DOI: 10.1007/978-94-007-6664-8_5

Google Scholar

[20] J. L. Volakis and K. Sertel, Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals, Proceedings of the IEEE, vol. 99, pp.1732-1745, (2011).

DOI: 10.1109/jproc.2011.2115230

Google Scholar

[21] C. H. Ahn, Microwave metamaterial applications using complementary split ring resonators and high gain rectifying reflectarray for wireless power transmission, 3436775 Ph.D., Texas A&M University, Ann Arbor, (2010).

Google Scholar

[22] E. Martini and S. Maci, Metasurface Transformation Theory, in Transformation Electromagnetics and Metamaterials, D. H. Werner and D. -H. Kwon, Eds., ed: Springer London, 2014, pp.83-116.

DOI: 10.1007/978-1-4471-4996-5_3

Google Scholar

[23] Odabasi, H., and F. L. Teixeira. Electric-field-coupled resonators as metamaterial loadings for waveguide miniaturization., Journal of Applied Physics114, no. 21 (2013): 214901.

DOI: 10.1063/1.4837597

Google Scholar

[24] Seetharamdoo, Divitha, Ronan Sauleau, Kouroch Mahdjoubi, and Anne-Claude Tarot. Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity., Journal of applied physics 98, no. 6 (2005): 063505.

DOI: 10.1063/1.2041841

Google Scholar

[25] Polemi, Alessia, Stefano Maci, and P. Kildal. Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails., Antennas and Propagation, IEEE Transactions on 59, no. 3 (2011): 904-913.

DOI: 10.1109/tap.2010.2103006

Google Scholar

[26] Balanis, Constantine A. Antenna theory: analysis and design. John Wiley & Sons, (2012).

Google Scholar

[27] Studio, CST Microwave. Workflow & solver overview., CST Studio Suite (2008).

Google Scholar

[28] Xu, He-Xiu, Guang-Ming Wang, Mei-Qing Qi, Chen-Xin Zhang, Jian-Gang Liang, Jian-Qiang Gong, and Yong-Chun Zhou. Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas., Antennas and Propagation, IEEE Transactions on 61, no. 2 (2013).

DOI: 10.1109/tap.2012.2215298

Google Scholar

[29] Li, Bo, and Zhongxiang Shen. Synthesis of quasi-elliptic bandpass frequency-selective surface using cascaded loop arrays., Antennas and Propagation, IEEE Transactions on 61, no. 6 (2013): 3053-3059.

DOI: 10.1109/tap.2013.2250237

Google Scholar

[30] Romo, G., and A. Ciccomancini Scogna. Substrate integrated waveguide (SIW) filter: Design methodology and performance study., In Signal Integrity and High-Speed Interconnects, 2009. IMWS 2009. IEEE MTT-S International Microwave Workshop Series on, pp.23-26. IEEE, (2009).

DOI: 10.1109/imws.2009.4814901

Google Scholar