Use the Differential Filters in the Control System of Pneumatic Muscle

Article Preview

Abstract:

The paper discusses the use of differential filters in control algorithms. The filters are designed to determine the derivatives of the input signal and eliminate measuring and quantization noise. The differential filters improved the quality of control, with the results being better than those obtained with the classic Finite Difference Method (FDM). The primary purpose of the study was to employ the differential filters in a real-time control algorithm, which requires appropriate derivatives. The control process involved applying a method of aggregation of state variables, based on signal derivatives, which can be used for non-linear dynamic systems. The experiments were conducted on a test stand with a pneumatic muscle acting as the plant to be controlled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-233

Citation:

Online since:

November 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. E. Takosoglu, , P. A. Łaski, S. Błasiak, A fuzzy logic controller for the positioning control of an electro-pneumatic servo-drive, Journal of Systems and Control Engineering, Volume 226, Issue 10, pp.1335-1343, November (2012).

DOI: 10.1177/0959651812456498

Google Scholar

[2] Z. Koruba, Z. Dziopa, I. Krzysztofik, Dynamics and control of a gyroscope-stabilized platform in a self-propelled anti-aircraft system, Journal of Theoretical and Applied Mechanics, v. 48, no 1, p.5 –26, Warsaw (2010).

Google Scholar

[3] I. Formánek, R. Farana, Drive dynamic analysis - The key to optimal drive performance, Applied Mechanics and Materials, Volume 611, 2014, Pages 208-215.

DOI: 10.4028/www.scientific.net/amm.611.208

Google Scholar

[4] L. Licev, M. Babiuch, R. Farana, J. Tomecek, Software analysis of mining images for objects detection, Acta Montanistica Slovaca 2013, 18 (1), pp.59-66.

Google Scholar

[5] P. Woś, R. Dindorf, Adaptive control of the electro-hydraulic servo-system with external disturbance; Asian Journal of Control; Vol. 15, No. 4, p.1065–1080, (2013).

DOI: 10.1002/asjc.602

Google Scholar

[6] P. Woś, R. Dindorf, Adaptive control of a parallel manipulator driven by electro-hydraulic cylinders; International Journal of Applied Mechanics and Engineering; Vol. 17, No 3, pp.1061-1071, (2012).

Google Scholar

[7] A. Nawrocka, A. Kot, Balance platform model parameter identification, Diffusion and Defect Data Pt. B: Solid State Phenomena, ISSN: 1012-0394, Volume 198, , Pages 439-444, (2013).

DOI: 10.4028/www.scientific.net/ssp.198.439

Google Scholar

[8] A. Nawrocka, A. Kot, Methods for EEG signal analysis, Proceedings of the 2011 12th International Carpathian Control Conference, ICCC'2011, Velke Karlovice; Czech Republic, Category number CFP1142L-CDR; Code 85880, Pages 266-269, (2011).

DOI: 10.1109/carpathiancc.2011.5945861

Google Scholar

[9] J. Ciosmak, Algorytm wyznaczania nieseparowalnych dwuwymiarowych zespołów filtrów dla potrzeb systemów transmultipleksacji, Przegląd Elektrotechniczny, 11/2011, ISSN 0033-2997, 217-220, (2011).

Google Scholar

[10] J. Ciosmak, Równoległa transmisja danych pomiarowych systemem transmultipleksacji, Pomiary Automatyka Kontrola PAK 01, 2011, Vol. 57. ISSN 0032-4140, 112-116, (2011).

Google Scholar

[11] A. Vitećek, Approach to Nonlinear Robust Control, Transaction of the VŚB- Technical University of Ostrava, No 1, Volume II, , Article No 1386, 73-78, ISSN 1210-0471, (2003).

Google Scholar

[12] A. Vitećek, M. Vitećkova, Nonlinear Control in Mechatronics, In Proceedings of International Conference Mechatronics 2000, Warszawa University of Technology, Vol. 1, pp.83-86, ISBN 83-914366-0-8, (2000).

Google Scholar

[13] L. Cedro, D. Janecki, Determining of Signal Derivatives in Identification Problems -FIR Differential Filters, Acta Montanistica Slovaca, R 16, ISSN 1335-1788, 47-54, (2011).

Google Scholar

[14] D. Janecki, L. Cedro, Wyznaczanie pochodnych sygnałów za pomocą regresyjnych filtrów różniczkujących, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 87 NR 8/2011, 253-259, (2011).

DOI: 10.15199/48.2015.12.68

Google Scholar

[15] J. Mocak, I. Janiga, M. Rievaj, D. Bustin, The Use of Fractional Differentiation or Integration for Signal Improvement, Measurement Science Review, Volume 7, Section 1, No. 5, (2007).

Google Scholar

[16] Y. Jun-Sheng, Z. Zu-Xun, Differentiation, semidifferentiation and semiintegration of a digital signals based on Fourier transformations, J. Electroanal. Chem., 403: 1-9, (1996).

Google Scholar

[17] R. Pintelon, J. Schoukens, Real-Time Integration and Differentiation of Analog Signals by Means of Digital Filtering, IEEE Transactions On Instrumentation And Measurement. VOL. 39, NO. 6, December (1990).

DOI: 10.1109/19.65799

Google Scholar

[18] R. G. Lyons, An introduction to digital signal processing (in Polish), WKiŁ, Warsow (1999).

Google Scholar

[19] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 568, (1993).

Google Scholar

[20] D. B. Reynolds, D. W. Repperger, C. A. Phillips, G. Bandry, Modeling the Dynamic Characteristics of Pneumatic Muscle, Annals of Biomedical Engineering, Vol. 31, p.310–317, (2003).

DOI: 10.1114/1.1554921

Google Scholar

[21] R. Dindorf, Modelowanie sztucznych układów mięśniowych z aktuatorami pneumatycznymi, Bio-Algorithms and Med-Systems Journal edited by Medical College – Jagiellonian University, Vol. 1, No. 1/2, 147-156, (2005).

Google Scholar

[22] G. K. Klute, B. Hannaford, Accounting for elastic energy storage in McKibben artificial muscle actuators, Journal Dynamics Systems, Measurement, and Control 122: 386–388, (2000).

DOI: 10.1115/1.482478

Google Scholar

[23] S. Adamczak, J. Bochnia, B. Kaczmarska, Estimating the uncertainty of tensile strength measurement for a photocured material produced by additive manufacturing, Metrology and Measurement Systems, Volume 21, Issue 3, 2014, Pages 553-560.

DOI: 10.2478/mms-2014-0047

Google Scholar

[24] S. Adamczak, J. Bochnia, C. Kundera, Stress and strain measurements in static tensile tests, Metrology and Measurement Systems, Volume 19, Issue 3, 2012, Pages 531-540.

DOI: 10.2478/v10178-012-0046-3

Google Scholar

[25] L. Cedro, Identification of an electrically driven manipulator using the differential filters, Pomiary Automatyka Robotyka 12/2012, 68-72, (2012).

Google Scholar

[26] L. Cedro, Identyfikacja manipulatora z napędem elektrycznym, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 88 NR 9a/2012, 208-212, (2012).

Google Scholar