Verification of the Mathematical Model for an Underwater Crawler Robot

Article Preview

Abstract:

This paper presents the mathematical and structural model as well as the verificationof a designed and built underwater crawler robot. The underwater crawler robot is designed to inspect elements of the water supply infrastructure, including pools, reservoirs and pipelines with round or square cross-sections. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage. The mathematical model was used for a number of simulations and subjected to verification on a real object in two test environments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-233

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Buratowski T., Cieślak P., Giergiel J., Uhl T., 2012, A self-stabilising multipurpose singlewheel robot, Journal of Theoretical and Applied Mechanics, 50, 1, 99-118.

Google Scholar

[2] Burdziński Z., 1972, Theory of Motion of a Tracked Vehicle (in Polish), Wydawnictwa Komunikacji i Łączności, Warszawa.

Google Scholar

[3] Burghardt, Andrzej. Accomplishing Tasks in Reaching the Goal of Robot Formation., Solid State Phenomena. Vol. 220. (2015).

DOI: 10.4028/www.scientific.net/ssp.220-221.27

Google Scholar

[4] Chodkowski A.W., 1982, Modeling of Tracked and Wheeled Vehicles (in Polish), Wydawnictwa Komunikacji i Łączności, Warszawa.

Google Scholar

[5] Chodkowski A.W., 1990, Design and Calculations of High Speed Tracked Vehicles (in Polish), Wydawnictwa Komunikacji i Łączności, Warszawa.

Google Scholar

[6] Choi H.R., Roh S., 2007, In-pipe robot with active steering capability for moving inside of pipelines, [In: ] Bioinspiration and Robotics Walking and Climbing Robots, Maki K. Habib (Ed. ), InTech, Vienna.

DOI: 10.5772/5512

Google Scholar

[7] Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P., & Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.

DOI: 10.4028/www.scientific.net/amm.319.385

Google Scholar

[8] Cues, 2012, Ultra Shorty III, http: /www. cuesinc. com/UltraShortyIII. html [Accessed 24. 04. 2012].

Google Scholar

[9] Dajniak H., 1985, Tractors, Theory of Motion and Design (in Polish), Wydawnictwa Komunikacji i Łączności, Warszawa.

Google Scholar

[10] Giergiel J., Buratowski T., Kurc K.: The Mechatronic Construction of the Inspection Mobile Robot, Polish Journal of Environmental Studies, Vol. 18, No. 4B, 2009, 64-70.

Google Scholar

[11] Giergiel J., Żylski W., 2005, Description of motion of a mobile robot by Maggie's equations, Journal of Theoretical and Applied Mechanics, 43, 3, 511-521.

Google Scholar

[12] Giergiel, J., & Kurc, K. (2011). Identification of the mathematical model of an inspection mobile robot with fuzzy logic systems and neural networks. Journal of Theoretical and Applied Mechanics, 49(1), 209-225.

Google Scholar

[13] Giergiel, M., Buratowski, T., Małka, P., Kurc, K., Kohut, P., & Majkut, K. (2012, July). The project of tank inspection robot. In Key Engineering Materials (Vol. 518, pp.375-383).

DOI: 10.4028/www.scientific.net/kem.518.375

Google Scholar

[14] Giergiel, Mariusz, et al. The Construction of a Biomimetic Mobile Underwater Robot., Solid State Phenomena 210 (2014): 309-319.

DOI: 10.4028/www.scientific.net/ssp.210.309

Google Scholar

[15] Horodinca M.H., Doroftei I., Mignon E., Preumont A., 2002, A simple architecture for in-pipe inspection robots, Proceedings of International Colloquium on Mobile and Autonomous Systems, 61-64.

Google Scholar

[16] Inuktun, 2012, Inuktun crawler vehicles, http: /www. inuktun. com/crawler-vehicles [Accessed 24. 04. 2012].

Google Scholar

[17] Ipek, 2011, ROVVER Brochure, http: /www. ipek. at.

Google Scholar

[18] Redzone, 2012, SOLO Unmanned Inspection Robot, http: /www. redzone. com/products/ solo%C2%AE [Accessed: 24. 04. 2012].

Google Scholar

[19] Tadakuma K., Tadakuma R., Nagatani K., Yoshida K., Ming A., Shimojo M., Iagnemma K., 2009, Basic running test of the cylindrical tracked vehicle with sideways mobility, IROS 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 1679-1684.

DOI: 10.1109/iros.2009.5354064

Google Scholar

[20] Wang Y., Zhang J., 2006, Autonomous air duct cleaning robot system, MWSCAS'06. 49th IEEE International Midwest Symposium on Circuits and Systems, 1, 510-513.

DOI: 10.1109/mwscas.2006.382110

Google Scholar

[21] Żylski W., 1996, Kinematics and Dynamics of Wheeled Mobile Robots (in Polish), Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszow.

Google Scholar