[1]
B. Polajzer G. S. Tumberger, S. Seme, D. Dolina, Detection of voltage sources based on instantaneous voltage and current vectors and orthogonal clarke's transformation, IET. Gener. Transm. Distrib. 2 (2008) 219–226.
DOI: 10.1049/iet-gtd:20070114
Google Scholar
[2]
M. Chaari, Meunier, F. Brouave, Wavelet a new tool for the resonant grounded power distribution systems relaying, IEEE Trans. on Power Delivery. 11 (1997) 1301-1308.
DOI: 10.1109/61.517484
Google Scholar
[3]
A. Jain, A. S. Thoke, R. N. Patel, Classification of Single Line to Ground Faults on Double Circuit Transmission Line using ANN, International Journal of Computer and Electrical Engineering. 1 (2009) 196-202.
DOI: 10.7763/ijcee.2009.v1.30
Google Scholar
[4]
T. Bouthiba, Fault detection and classification technique in EHV transmission lines based on artificial neural networks, Euro. Trans. Electr. Power. 15 (2005) 443–451.
DOI: 10.1002/etep.58
Google Scholar
[5]
X. Dong, , W. Kong, T. Cui, Fault Classification and Faulted-Phase Selection Based on the Initial Current Traveling Wave, IEEE Trans. on Power Delivery. 24 (2009) 552-559.
DOI: 10.1109/tpwrd.2008.921144
Google Scholar
[6]
C. H. Kim, H. Kim, Y.H. Ko, S.H. Byun, R. K. Aggarwal, A. T. Johns, A Novel Fault-Detection Technique of High-Impedance Arcing Faults in Transmission Lines Using the Wavelet Transform, IEEE Trans. on Power Delivery. 17 (2002) 921-929.
DOI: 10.1109/tpwrd.2002.803780
Google Scholar
[7]
K. M. Silva, B. A. Souza, N. S. D. Brito, Fault Detection and Classification in Transmission Lines Based on Wavelet Transform and ANN, IEEE Trans. on Power Delivery. 21 (2006) 2058-(2063).
DOI: 10.1109/tpwrd.2006.876659
Google Scholar
[8]
P.S. Bhowmik, P. Purkait, K. Bhattacharya: A novel wavelet transform aided neural network based transmission line fault analysis method, Electrical Power and Energy Systems. 31 (2009) 213–219.
DOI: 10.1016/j.ijepes.2009.01.005
Google Scholar
[9]
PSCAD/EMTDC User's Manual, Manitoba HVDC Research Centre, Winnipeg, MB, Canada. (2001).
Google Scholar
[10]
B. Alberto, B. Mauro, D. Mauro, A.N. Carlo, P. Mario, Continuous-Wavelet Transform for Fault Location in Distribution Power Networks: definition of mother wavelet inferred from fault originated transient, IEEE Trans. on Power Delivery, 23 (2008).
DOI: 10.1109/tpwrs.2008.919249
Google Scholar
[11]
M. Barakat, F. Druaux, D. Lefebvre, M. Khalil, O. Mustapha: Self adaptive growing neural network classifier for faults detection and diagnosis, Neurocomputing. 74 (2011) 3865-3876.
DOI: 10.1016/j.neucom.2011.08.001
Google Scholar
[12]
W. Zhao Y.H. Song, Y. Min: Wavelet analysis based scheme for fault detection and classification in underground power cable systems, Electr. Power syst. Res. 53 (2000) 23-30.
DOI: 10.1016/s0378-7796(99)00033-4
Google Scholar
[13]
S.P. Valsan, K.S. Swarup: Wavelet transform based digital protection for transmission lines, Electrical Power and Energy Systems. 31 (2009) 379–388.
DOI: 10.1016/j.ijepes.2009.03.024
Google Scholar
[14]
A.H. Osman, O.P. Malik, Transmission line distance protection based on wavelet transform, IEEE Trans on Power Deliv. 19 (2004) 515-523.
DOI: 10.1109/tpwrd.2003.822531
Google Scholar
[15]
O.F. Alfredo, I.E. Luis, R.E. Carlos, Three-phase adaptive frequency measurement based on Clarke's Transformation, IEEE Trans. on Power Delivery, Vol. 21, (2000), pp.1101-1105.
Google Scholar
[16]
B. Noshad, M. Razaz, S.G. Seifossadat, A new algorithm based on Clarke's Transform and Discrete Wavelet Transform for the differential protection of three-phase power transformers considering the ultra-saturation phenomenon, Electric Power Systems Research. Vol. 110, (2014).
DOI: 10.1016/j.epsr.2014.01.001
Google Scholar
[17]
N. Atthapol, P. Chaichan, Discrete Wavelet Transform and Back-propagation neural networks algorithm for fault location on Single-circuit transmission line, Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand. (2009).
DOI: 10.1109/robio.2009.4913242
Google Scholar
[18]
E. Sami, Y. Selcuk, P. Mustafa: Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition, Expert Systems with Application. 34 (2008) 2937–2944.
DOI: 10.1016/j.eswa.2007.05.011
Google Scholar