Nanofluid in Thermal Transfer - Is it a Solution for the Future?

Article Preview

Abstract:

In a global context of saving energy and the desire to improve heat exchangers, the use of nanofluids today seems like a craze growing. Are nanofluids a solution What are the limitations of the use of such fluids This article proposes a review of thermo physicals coefficients of carbon nanotube-water nanofluids. This article reports on an experimental study completed to observe the impacts of the concentration, temperature, aspect ratio, and surfactant on the thermal conductivity and viscosity. Finally this article advocates a field for using nanofluid in heat exchangers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-15

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. SyamSundara, Manoj K. Singha, Antonio C.M. Sousaanvestigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications, International Communications in Heat and Mass Transfer, volume 44, May 2013, Pages 7–14.

DOI: 10.1016/j.icheatmasstransfer.2013.02.014

Google Scholar

[2] Koo J., Kleinstreuer C., A New Thermal Conductivity Model for Nanofluids, Journalof Nanoparticle Research, 6/ (2004), 577-588.

DOI: 10.1007/s11051-004-3170-5

Google Scholar

[3] Yang, Y., Grulke E. A., Zhang Z. G., Wu G., Thermal and rheological properties ofcarbon nanotube-in-oil dispersions J. Appl Phys., 99(2006), 114307.

Google Scholar

[4] Yu W., Choi S. U. S., The role of interfacial layers in the enhanced thermalconductivity of nanofluids: a renovated Maxwell model, J. nanoparticle Res, 5 (2003), 167-71.

DOI: 10.1023/a:1024438603801

Google Scholar

[5] Walvekar R., Faris I.A., Khalid M., Thermal conductivity of carbon nanotubenanofluid-Experimental and theoretical study, Heat Transfer-Asian Research 41(2)(2012) 145-163.

DOI: 10.1002/htj.20405

Google Scholar

[6] Wang X.Q., Mujumdar A.S., Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences 46 (2007) 1-19.

Google Scholar

[7] Halelfadl S., Estellé P., Aladag B., Doner N., Maré T., Viscosity of carbonnanotubes water-based nanofluids: Influence of concentration and temperature, International Journal of Thermal Sciences, 71 (2013), 111-117.

DOI: 10.1016/j.ijthermalsci.2013.04.013

Google Scholar

[8] Indhuja A., Suganthi K. S., Manikandan S., Rajan K. S., Viscosity and thermalconductivity of dispersions of gum arabic capped MWCNT in water: Influence ofMWCNT concentration and temperature, article in press, (2013).

Google Scholar

[9] Yang, Y., Grulke E. A., Zhang Z. G., Wu G., Thermal and rheological properties ofcarbon nanotube-in-oil dispersions J. Appl Phys., 99(2006), 114307.

Google Scholar

[10] Wusiman K., Jeong H., Tulugan H., Afrianto K., Chung H., Thermal performanceof multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions withsurfactants SDBS and SDS, International Communications in Heat and MassTransfer, 41 (2013), 28–33.

DOI: 10.1016/j.icheatmasstransfer.2012.12.002

Google Scholar

[11] Nasiri A., Niasar M.S., Rashidi A., Amrollahi A., Khodafarin R., Effect ofdispersion method on thermal conductivity and stability of nanofluid, ExpThermFluid Sci., 2011; 35: 717-23.

DOI: 10.1016/j.expthermflusci.2011.01.006

Google Scholar

[12] Aladag B., Halelfadl S., Doner N., Maré T., Duret S., Estellé P., Experimentalinvestigations of the viscosity of nanofluids at low temperatures, App. Energy, 97(2012) 876-880.

DOI: 10.1016/j.apenergy.2011.12.101

Google Scholar

[13] Estellé P., Halelfadl S., Doner N., Maré T., Shear history effect on the viscosity ofcarbon nanotubes water based nanofluid Current Nanoscience, 9/2 (2013) 225-230.

DOI: 10.2174/1573413711309020010

Google Scholar

[14] Mahbubul I. M., Amalina M. A., Latest developments on the viscosity of nanofluids, International Journal of Heat and Mass Transfer, (/4 (2012), 874-885.

DOI: 10.1016/j.ijheatmasstransfer.2011.10.021

Google Scholar

[15] Krieger I. M., Dougherty T.J., A mechanism for non-Newtonian flow in suspensionof rigid spheres, J. Trans. Soc. Rheol. 3 (1959) 137e152.

Google Scholar

[16] S.H. Maron, P.E. Pierce, Application of Ree-Eyring generalized flow theory to suspensions of spherical particles,J. Colloid Sci., 11 (1956), p.80–95.

DOI: 10.1016/0095-8522(56)90023-x

Google Scholar

[17] H. Brenner, D.W. Condiff, Transport mechanics in systems of orientable particles. Part IV. Convective transport, J. Colloid Int. Sci., 47 (1974), p.199–264.

DOI: 10.1016/0021-9797(74)90093-9

Google Scholar

[18] Phuoc T. X., Massoudi M., Chen R. H., Viscosity and thermal conductivity ofnanofluids containing carbon nanotubes stabilized by chitosan, Int J. Thermal Sci., 50(2011), 12-18.

DOI: 10.1016/j.ijthermalsci.2010.09.008

Google Scholar

[19] Nguyen C.T., Desgranges F., Roy G., Galanis N., Maré T., Butcher S., AngueMintsa H., Viscosity data for Al2O3 water nanofluid hysteresis: is heat transferenhancement using nanofluids reliable?, International Journal of Thermal Sciences, 47(2008).

DOI: 10.1016/j.ijthermalsci.2007.01.033

Google Scholar

[20] Chen L, Xie H, Silicon oil based multiwalled carbon nanotubes nanofluid withoptimized thermal conductivity enhancement, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352 (2009), 136-140.

DOI: 10.1016/j.colsurfa.2009.10.015

Google Scholar

[21] Garg P., Alvarado J. L., Marsh C., Carlson T. A., Kessler D. A., Annamali K., Anexperimental study on the effect of ultrasonification on viscosity and heat transferperformance of multi-wall carbon nanotube-based aqueous nanofluids, Int J Heat MassTransfer, 52(2009).

DOI: 10.1016/j.ijheatmasstransfer.2009.04.029

Google Scholar