Validation of Thermal Modelling for the Back Surface Temperature of a Photovoltaic Module for Hot and Humid Climate

Article Preview

Abstract:

Thermal modeling is one of the approaches used to assess the performance of photovoltaic thermal. The main objective of this study is to validate thermal modeling by using the experimental results to estimate the back surface temperature of a photovoltaic module in hot and humid climate. Several assumptions have been made to simplify the analysis base on energy balance method. Good agreement is observed between the experiment and thermal modeling, with a correlation coefficient (r) and root mean square percent deviation of 0.931 and 12.1% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. K. Tonui and Y. Tripanagnostopoulos, Improved PV/T solar collectors with heat extraction by forced or natural air circulation, Renew. Energy. 32 (2007) 623–637.

DOI: 10.1016/j.renene.2006.03.006

Google Scholar

[2] B. . Huang, T. Lin, W. Hung, and F. Sun, Performance evaluation of solar photovoltaic/thermal systems, Sol. Energy. 70 (2001) 443–448.

DOI: 10.1016/s0038-092x(00)00153-5

Google Scholar

[3] M. Bakker, H. a. Zondag, M. J. Elswijk, K. J. Strootman, and M. J. M. Jong, Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump, Sol. Energy. 78 (2005) 331–339.

DOI: 10.1016/j.solener.2004.09.019

Google Scholar

[4] M. A. M. Rosli, S. Misha, K. Sopian, S. Mat, M. Y. Sulaiman and E. Salleh, Parametric Analysis on Heat Removal Factor for a Flat Plate Solar Collector of Serpentine Tube, World Appl. Sci. J. 29 (2014) 184–187.

DOI: 10.4028/www.scientific.net/amm.699.455

Google Scholar

[5] P. G. Charalambous, G. G. Maidment, S. a. Kalogirou, and K. Yiakoumetti, Photovoltaic thermal (PV/T) collectors: A review, Appl. Therm. Eng. 27 (2007) 275–286.

DOI: 10.1016/j.applthermaleng.2006.06.007

Google Scholar

[6] P. Dupeyrat, C. Ménézo, and S. Fortuin, Study of the thermal and electrical performances of PVT solar hot water system, Energy Build. 68 (2014) 751–755.

DOI: 10.1016/j.enbuild.2012.09.032

Google Scholar

[7] Y. Tripanagnostopoulos, T. H. Nousia, M. Souliotis, and P. Yianoulis, HYBRID PHOTOVOLTAIC / THERMAL SOLAR SYSTEMS, Sol. Energy. 72 (2002) 217–234.

DOI: 10.1016/s0038-092x(01)00096-2

Google Scholar

[8] S. Dubey and A. A. O. Tay, Energy for Sustainable Development Testing of two different types of photovoltaic – thermal ( PVT ) modules with heat flow pattern under tropical climatic conditions, Energy Sustain. Dev. 17 (2013) 1–12.

DOI: 10.1016/j.esd.2012.09.001

Google Scholar

[9] L. W. Florschuetz, EXTENSION OF THE HOTTEL-WHILLIER MODEL TO THE ANALYSIS OF COMBINED PHOTOVOLTAIC / THERMAL FLAT PLATE COLLECTORS, Sol. Energy. 22 (1979) 361–366.

DOI: 10.1016/0038-092x(79)90190-7

Google Scholar

[10] A. Tiwari and M. S. Sodha, Performance evaluation of solar PV/T system: An experimental validation, Sol. Energy. 80 (2006) 751–759.

DOI: 10.1016/j.solener.2005.07.006

Google Scholar

[11] S. Dubey and G. N. Tiwari, Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater, Sol. Energy. 82 (2008) 602–612.

DOI: 10.1016/j.solener.2008.02.005

Google Scholar

[12] S. C. Solanki, S. Dubey, and A. Tiwari, Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors, Appl. Energy. 86 (2009) 2421–2428.

DOI: 10.1016/j.apenergy.2009.03.013

Google Scholar